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Concept of Wavefront, Huygens' Principle – II 

Hello everyone, welcome back to the class, and today we will learn about the applications of 

Huygens’s principle, we will see what are the applications of Huygens’s principle, how 

successful it was, and we will see the phenomena, how it explained the phenomena of 

reflection, sorry refraction and total internal reflection. 
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Now, the first application which we will learn today of Huygens’s principle is in refraction, we 

will see using Huygens’s principle how to verify the law of refraction. Now, we will start here 

with a plane wave, and the wavefront of this plane wave is represented by this AB line here.  

Suppose this is the, this is a cross-section of a plane which is looking which is in the form of a 

line, and this 𝐴1𝐵1 wavefront falls at an angle, at an interface 𝑆1𝑆2, 𝑆1𝑆2 divides the two media. 

Above 𝑆1𝑆2, there is a medium of different refractive index and below 𝑆1𝑆2, there is a medium 

of different refractive index. And the light or the wavefront falls from the top medium at this 

interface, and then it gets refracted into the second medium, the second medium is drawn here 

with a shaded colour, the brownish colour.  

Now, let 𝜏  be the time taken for the wavefront to travel the distance 𝐵1𝐵3. Sorry, it is not 

disturbance, it is distance. Now, this is the 𝐴1𝐶1𝐵1 is the wavefront which is falling out the 



interface, and since it is this wavefront falling at some angle, the part 𝐴1 of the wavefront will 

fall earlier as compared to the point 𝐵1. I repeat, the point 𝐴1 of the wavefront will fall at the 

interface earlier as compared to point 𝐵1. Now, it will the point 𝐵1 will take some time to reach 

at the interface, and this point 𝐵1 will fall at point 𝐵3 at the interface.  

Now, suppose point 𝐵1 takes time 𝜏  to reach at 𝐵3, and suppose the speed of the wave in first 

medium is 𝑣1. While, that in second medium is 𝑣2. Since point 𝐵1 is taking 𝜏 (tau) time in 

reaching to point 𝐵3, the total distance travel by point 𝐵1 will be equal to 𝑣1 × 𝜏, 𝜏 is the time 

and 𝑣1 is the speed in the upper medium.  

Therefore, the total distance would be 𝑣1 × 𝜏. During the time period 𝜏, the 𝐴1 would have 

gone deeper into the second medium, it would travel, the 𝐴1 will reach to point 𝐴3 within the 

medium, and this distance, this much distance would be travelled by point 𝐴1 in medium 2, in 

the second medium.  

And since medium 2 is of different refractive index, the wave will propagate with different 

speed in this medium. Suppose the wave speed is 𝑣2 here. Therefore, in time 𝜏 it will travel a 

distance 𝑣2𝜏. Therefore, 𝐴1𝐴3 would be equal to 𝑣2𝜏 , and this is what is written here 𝐵1𝐵3 =

𝑣1𝜏 , while 𝐴1𝐴3 = 𝑣2𝜏. And 𝐴1𝐴3 would be different from 𝐵1𝐵3, because of different 

velocities.  
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Now, let us consider 2 triangles. The first one is 𝐵2𝐶2𝐵3. This is the first triangle, and this is 

our second triangle , 𝐶3𝐶2𝐵3 is the second triangle. But before moving ahead, let me point out 

a few things. Now, this is the wavefront which is moving in this direction, and then after 



refraction it got a bit tilted and then it is traveling in this particular direction, we picked some 

random point 𝐶1 on the incoming wavefront, and we assume that it took 𝜏1 time to reach at 

point 𝐶2, and therefore 𝐶1𝐶2 = 𝑣1𝜏1 . We also assume that angle of incidence of this wavefront 

at 𝑆1𝑆2 interface is i. Therefore, this angle would be i, which is our angle of incidence, and 

suppose the angle of refraction is r. Therefore, this angle would be r, or this angle would be r.  

Having known this, let us write the expression for sin i/sin r using these two triangles, what 

would be sin i in this upper triangle, this is our upper triangle, this is 90 degree angle, and how 

did we form this triangle? We just drew a perpendicular from here to here. Now, what we know 

is that sin i would be equal to 𝐵2𝐵3 by the hypotenuse which is 𝐶2𝐵3. Similarly, sin r would be 

𝐶1𝐶3/𝐶2𝐵3. And since this is common, 𝐶2𝐵3 is common in both the denominators, it will go 

up and we will be left with 𝐵2𝐵3/𝐶2𝐶3.  

Now, as we know 𝐶2𝐶3 = 𝑣1𝜏, and this is equal to 𝐶2𝐶3. Therefore, in 𝐵1𝐵2 = 𝑣1𝜏. And 

therefore,  𝐵2𝐵3 = 𝑣1𝜏 − 𝑣1𝜏1 = 𝑣1(𝜏 − 𝜏1)..  

Now, similarly for 𝐶2𝐶3, 𝐶2𝐶3 = 𝐴2𝐴3. Here 𝐶2𝐶3 = 𝐴2𝐴3, and from here we can get that 

𝐶2𝐶3 = 𝑣2(𝜏 − 𝜏2)., this is what is written here. Now, from here the 𝜏 − 𝜏1 will go away, and 

we will have 𝑣1/𝑣2 and which is our Snell’s law.  

Now, you may see that in the figure we have this type of structures, and which shows the 

wavefront, the secondary wavelets emit from the wavefront. This is the primary wavefront, 

𝐴1𝐵1 is the primary wavefront, and from each point secondary wavefront emits and these are 

the traces of the secondary wavefront.  

And then we draw an envelope on the secondary wavefront and this envelope is 𝐴2𝐶2𝐵2, from 

𝐴2𝐶2𝐵2 again new wavefront, new secondary wavefront emanates and these are the part of the 

new secondary wavefront, and then we draw this envelope on top of it. Similarly, this dashed 

line also 𝐴4𝐶4𝐵4 again represents the newer position of the wavefront. And this is how the 

wavefront propagates, and this is falling from the principle Huygens’s principle, this is how 

the wavefront propagates. The wavefront started from 𝐴1𝐶1𝐵1 then it leads to 𝐴2𝐶2𝐵2, then 

𝐴3𝐶3𝐵3 and then 𝐴4𝐶4𝐵4 and so on. Now, having known the expression of sin i/sin r=𝑣1/𝑣2, 

we know that it verifies the Snell’s law.  
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And now, it is absorbed now in the figure itself you can see that here since this is a denser 

medium. We assume that it is denser, and this is a rarer medium then what will happen? This 

distance 𝑣2𝜏 , this distance would be smaller than this distance 𝑣1𝜏. And therefore, r would be 

smaller than i, angle of incidence would be larger than angle of refraction.  

This we can, just from the geometry we can get this information. And this is true for case when 

light is traveling from rarer medium to the denser medium, opposite would be true for the case 

when light travels from denser to rare medium. And therefore, the angle of incident would be 

larger than the angle of refraction, and consequently sin i would be larger than sin r. Which 

implies that 𝑣1 is larger than 𝑣2, which says that if angle of incidence is larger than angle of 

refraction, then 𝑣1 is larger than 𝑣2, it means the light will travel faster in the rarer medium as 

compared to the denser medium.  



And therefore, Huygens’s principle predicts that speed of light in a rarer medium is greater 

than the speed of light in the denser medium, and this prediction is contradictory to that made 

by corpuscular theory. And the prediction made by Huygens theory is correct. And it turned 

down the Newton's corpuscular theory. Newton's corpuscular theory failed here. And 

Huygens’s principle correctly predicted the relative speed of the light, or the relative speed of 

the wave in different kinds of medium, if a medium is denser, the light will propagate slower 

there.  
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Now, if c represents the speed of light in free space, then there is c/ 𝑣 we know it is called a 

refractive index of the medium, n is equal to c/𝑣. We have already discussed it. Now, since the 



phenomena of refraction, they are involved two medium. Therefore, we will have to define 2 

index of refraction. The 𝑛1 and 𝑛2 are the refractive indices of the two medium, 𝑛1 is for the 

first medium, 𝑛2 is for the second medium, and 𝑣1 and 𝑣2 are the corresponding velocities. 

Then, we know that Snell’s law is sin i by sin r is equal to 𝑛2/𝑛1 which is written here, but 

same thing can be written in terms of 𝑣1, 𝑣2 as we derived earlier, and we can also involve 

wavelength here too, how to involve wavelength?  
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Now, suppose in this figure. Now, you see you will see that in this figure 4 plane waves are 

drawn, and suppose all these waves, wavefronts are separated by some distance, and suppose 

this are 𝜆2, this is again 𝜆2, this is again 𝜆2 and here it is 𝜆1, this will also be equal to 𝜆1. 

Because this is in the first medium, 𝜆1 what we can say is that 𝐶1𝐶2 = 𝐵1𝐵2, which would be 

equal to 𝜆1. And 𝐴2𝐴3 = 𝐶2𝐶3 = 𝜆2, 𝜆1 is the wavelength of the wave in upper medium, and 

𝜆2 is the wavelength of the wave in the lower medium, and so on.  

(Refer Slide Time: 14:10) 



 

 

If this is the case, then what we can do is that, we can write this from the geometry in these 

triangle. In these 2 triangle ,using the geometry, if this distance is 𝜆2, and this distance is 𝜆1. 

And with the assumption that all these wavefronts are separated by their respective wavelength, 

with these assumptions, or we can say that all these wavefronts represent the constitutive crest 

with this assumption 𝐶2𝐶3 = 𝜆2, while 𝐵2𝐵3 = 𝜆1. And using these 2 triangles, we can say that 

sin i/sin r=𝜆1/𝜆2, and which is again equal to 𝑣1/𝑣2 and from here we get 𝑣1/𝜆1 = 𝑣2/𝜆2.  

And if they are several layered medium then we can equivalently write that 𝑣1/𝜆1 = 𝑣2/𝜆2, 

which is again equal to 𝑣3/𝜆3, and so on and so forth. And we can write 𝑣𝑖/𝜆𝑖 for any medium. 

It means that the ratio 𝑣/𝜆 is constant in this particular case. But 𝜆 changes when you go from 

one medium to the another medium, 𝜆 changes as well as 𝑣  also changes. When we go from 1 

medium to another medium, 𝜆 changes and the velocity also changes, but the ratio of the two 



does not change. Therefore, this ratio must be representing some important parameter, what is 

that parameter let us see.  

When a wave gets refracted into a denser medium, the wavelength and the speed of propagation 

decreases, but this ratio v/𝜆 it remains the same and we call this frequency, frequency of the 

source, it is a property of the source. 𝑣/𝜆 represents a quantity which we name as frequency, 

and this is the property of the source, it does not have to do anything with the medium. It is not 

the property of the medium. This is all about refraction, and we successfully explained the 

phenomena of refraction using Huygens’s principle. 
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Now, we will try to understand reflection using Huygens’s principle. We will start with the 

same concept, suppose this APB represents a planewave which is falling obliquely, which is 

falling at an angle i, here i is the angle of incidence on a mirror AB’, this horizontal dark 

horizontal line is a mirror, had there been no mirror this wavefront AB would have propagated 

further and would have reached to position CB’, CB’ would have been the new position of the 

wavefront after certain interval, but due to the presence of this mirror, this incident wavefront 

could not reach to 𝐶𝐵′.  

Now, in this figure, let us again do what we did in refraction, let us assume a random point P 

on the wavefront, and then this point P propagate to point 𝑃1 here on the mirror, and this angle 

i would be the angle of incidence, and suppose the time the point B takes to reach 𝐵′ is 𝜏. 

Therefore, this distance we call it as 𝑣1𝜏, and suppose here the time is 𝜏1. Therefore, this 

distance would be 𝑣1𝜏1.  
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Now, there is one correction, instead of writing 𝑣 here, let us write let us instead of writing  𝑣1 

here let us write 𝑣 only, let us repeat it, similar to the previous discussion, we assume that the 

point B takes 𝜏 time to reach at point 𝐵′, and the velocity in this medium of the wave is 𝑣.  

Therefore, this distance would be 𝑣𝜏, and if we pick a random point P on the wavefront AB 

then point P will reach to point 𝑃1 in time 𝑣 𝜏1. 𝜏1 is another time, the 𝜏1 would be shorter than 

𝜏. And then we draw a perpendicular from 𝑃1 to B𝐵′ line, and this will meet here, and this 

distance B𝐵1 would be equal to 𝑃𝑃1 and which is equal to 𝑣𝜏1.  
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We will see this is what is exactly written here BB. Now, 𝐵𝐵′ is this distance here, 𝐵𝐵′ distance 

is equal to PP’ distance and 𝑃𝑃′ is shown here. This is 𝑃𝑃′, and this is your BB’. Had there 

been no mirror 𝐵𝐵′ would have been equal to 𝑃𝑃′, and which is equal to AC which is 𝑣𝜏, 𝑣 is 

the velocity of the light in that medium and 𝜏 is the time it takes. Therefore, 𝑣𝜏 represents the 

distance. Now, in order to determine the shape of the reflected wave at some time t is equal to 

𝜏, we consider this arbitrary point as we stated before, and we assume that this distance is 𝑣1𝜏, 

𝜏1 is the time which P takes to reach 𝑃1.  

Now, from point 𝑃1, we draw a sphere of radius 𝑣(𝜏 − 𝜏1) this whole distance 𝐵𝐵′ = 𝑣𝜏, and 

the shorter distances 𝑣𝜏1. Now, we just take the difference between these two distances which 

is nothing but 𝐵1𝐵′. 𝐵1𝐵′ = 𝑣(𝜏 − 𝜏1), and we will draw a sphere of radius 𝑣(𝜏 − 𝜏1) 

considering 𝑃1 as the centre of the sphere.  

And once the sphere is drawn, we will draw a tangent plane on this sphere from point B’. Now, 

from 𝑃1 we drew a sphere and with this sphere, we drew a tangent and this tangent is fall 

passing or touching this sphere at point 𝑃2. We know that B𝐵1 which is this distance, this is 

equal to 𝑃𝑃1 = 𝑣𝜏1, and the distance 𝐵1𝐵′ = 𝑃1𝑃2 = 𝑣(𝜏 − 𝜏1).  

𝑃2 is this distance, this is 𝑃1𝑃2 distance, this distance would be equal to 𝐵1𝐵′. Now, let us 

consider two triangles here to, what would be those triangles? This is the first triangle, and this 

is our second triangle, we will consider these two triangles. In these two triangles, this is 90 

degree angle, these are right angled triangle, these are the 90 degree angles. 𝑃1𝐵′, this line, this 

the base 𝑃1𝐵′ line is common to both of these triangles, 𝑃1𝐵′ is common and this side is equal 



to this side, 𝑃1𝑃2 = 𝐵1𝐵′. The base is common,  one side of these two triangle angles is again 

equal.  

Therefore, 2 sides are equal and since they both are right angle triangle, one angle is also equal, 

and therefore, the angle of incidence would be equal to the angle of refraction, i would be equal 

to r therefore, and which is nothing but the law of reflection. Therefore, using Huygens’s 

principle, we again proved that the angle of incidence is equal to angle of reflection, and which 

is the law of reflection.  

And what did we use? We use only the concept of wavefront, we used only the Huygens’s 

principle. We started with a wavefront AB and then we assume that the one point at wavefront 

is taking certain time in reaching to the mirror, and a random point again taking certain other 

time in reaching to some other point at the mirror, and then we drew some geometry and we 

found that angle of incidence is equal to angle of refraction. And this is how Huygen principle 

explained the reflection.  

(Refer Slide Time: 24:30) 

 

What is else which is left? Total internal reflection. Now, let us try to understand total internal 

reflection using Huygens’s principle, using Huygens theory. In this case, we know that total 

internal reflection happens, when light travels from a denser medium to a rarer medium. 

Therefore, this shaded region, we call it as a denser medium. And this we call a rarer medium, 

and within the denser medium wavefront 𝐴1𝐵1 is traveling, and it is met to incident on the 

interface between the two media, at an angle i, which is our angle of incidence. Had there been 



no TIR, had there been usable refraction, this wavefront 𝐴1𝐵1 would have travel to the rarer 

medium, and in the second medium it would have been at position 𝐴2𝐵2.  

The new wavefront position in the rarer medium would have been 𝐴2𝐵2. And following from 

our previous discussion, we here again assume that point 𝐵1 sitting at the input wavefront takes 

𝜏 amount of time in reaching to point 𝐵2 at the interface, and we also assume that 𝑣1 is the 

velocity or speed of the wave in the first medium, in the denser medium then 𝐵1𝐵2 = 𝑣1𝜏. And 

similarly, in the second medium, 𝐴1𝐴2 = 𝑣2𝜏 .  

And we also know that velocity in the rarer medium would be larger than that into the denser 

medium, why? Because, Huygens prove it, in our first example where we were studying 

refraction, we saw that the velocity of light in denser medium is smaller therefore, 𝑣1 would be 

smaller than 𝑣2, or 𝑣2 would be larger than 𝑣1.  

Now, in time 𝜏, B reaches to 𝐵1, reaches to 𝐵2, and during this time only 𝐴1 will reach to 𝐴2, 

the new position of 𝐴1 would be 𝐴2, and what will be the distance 𝐴1𝐴2? This distance will be 

equal to 𝑣2𝜏, and since 𝑣2 is larger than 𝑣1, therefore, 𝑣2𝜏 would be larger than 𝑣1𝜏 , or 𝐴1𝐴2 

would be larger than 𝐵1𝐵2. Now, angle of incidence is given here, and this would be the angle 

of refraction, assuming that it is refraction happening here. Now, let us go to the text, if the 

angle of incidence is such that 𝑣2𝜏 is larger than 𝐴1𝐵2, 𝐴1𝐵2 is this distance. Then the refracted 

wavefront will be absent, and total internal reflection will occur.  

Let us repeat, if we want TIR to happen here, then this 𝐴1𝐵2, this must be smaller than 𝑣2𝜏, let 

us take sin of r, r is the angle of refraction, then sin of r would be equal to 𝐴1𝐴2/𝐴1𝐵2, this is 

from the figure. Now, if we want 𝑣2𝜏 or 𝐴1𝐴2 to be larger than 𝐴1𝐵2, then what will happen?  

Now, if 𝐴1𝐴2 is larger than 𝐴1𝐵2, then what will happen is that, r the refraction will never 

happen. The refraction will not happen if 𝐴1𝐴2 is larger than 𝐴1𝐵2, why? Because the 

maximum value of sin r is equal to 1, and if 𝐴1𝐴2 is larger than 𝐴1𝐵2, then the value of sin r 

would be larger than 1, which is not allowed. Therefore, refraction will not happen, and the 

wave will go into the first medium itself which is TIR, total internal reflection.  

Now, the critical angle will occur when 𝐴1𝐴2 = 𝐴1𝐵2, that is the maximum allowed value of 

𝐴1𝐴2. The maximum allowed value of 𝐴1𝐴2 would be that it become equal to 𝐴1𝐵2. And in 

this case, 𝐴1𝐵2 = 𝑣2𝜏. In this particular case, we can define the critical angle, and which is 

represented by sin 𝑖𝑐. Now, let us calculate sin 𝑖𝑐, sin 𝑖𝑐 would be equal to 𝐵1𝐵2/ 𝐴1𝐵2, what 



is 𝐵1𝐵2? It is 𝑣1𝜏 , and what is 𝐴1𝐵2? It is equal to 𝑣2𝜏 . And therefore, sin 𝑖𝑐 would be 𝑣1/𝑣2 

which is nothing but 𝑛2/𝑛1. Which is the 𝑛1, 𝑛2 the refractive index.  

Now, refraction of a plane wavefront incident on a rarer medium is being considered here. 

Therefore, 𝑣2 is larger than 𝑣1. The angle of refraction r is greater than the angle of incidence. 

Now, in this case you can see here, because this is the rarer medium, and in rarer medium, this 

𝑣2 is larger. Therefore, r would be larger than i, the value of i when r is equal to 𝜋/2, we get 

critical angle. And this is all for total internal reflection, and we saw now here that we cannot 

get refraction if i is larger than a certain value, and that value is 𝑖𝑐 here. We keep increasing i, 

let me reframe this.  

Wavefront is made to incident on some non-zero angle, and it falls from a denser medium to 

the interface, to an interface and this interface separates a denser medium from the rarer 

medium. Now, this wavefront falls in an incident angle i, as long as this i is small, that angle 

of refraction is such that 𝐴1𝐴2 is smaller than 𝐴1𝐵2, and we have refraction.  

Now, situation comes when 𝐴1𝐴2 = 𝐴1𝐵2, and this is called critical angle. And in this case, 

we get the TIR, and if we increase i, such that 𝐴1𝐴2 becomes larger than 𝐴1𝐵2, then refraction 

is not allowed. Because the angle of refraction is such that sin of r is now larger than 1. If 𝐴1𝐴2 

is larger than 𝐴1𝐵2, then sin r would be larger than 1, which is not allowed. Therefore, 

refraction will not happen. And the wave will go into the first medium itself which is your TIR, 

which is defined as total internal reflection. This is all for today, I end my lecture here, and see 

you in the next class. Thank you for being with me. 

 


