
Applied Optics 

Professor Akhilesh Kumar Mishra  

Department of Physics 

Indian Institute of Technology, Roorkee  

Lecture 10  

Problems on Geometrical Optics 

Hello everyone, welcome to my class. Now, this is my tenth class and tenth lecture and today 

we will solve a few problems which are based on geometrical optics. We are now starting this 

problem solving lectures because we have covered all the topics of the geometrical optics then 

after today we will start wave optics. So, let us start, the first problem is from ray tracing and 

here we will use ray equation and the problem states as follows.  
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Consider a medium characterized by following refractive index distribution and the square of 

refractive index which is a function of 𝑥 is given as 𝑛1
2 − 𝛾2𝑥2 which of course is a parabolic 

index medium and what is being asked? the question asked for the ray path, the question asked 

for ray path using ray equation. Now, you see that this refractive index is parabolic, what is 

parabolic refractive index? over here on this vertical axis let us plot n here on the horizontal 

axis let us plot 𝑥, 𝑥 is here and n is being plotted on the vertical axis.  

Now, if 𝑥 = 0 then you see that 𝑛2 = 𝑛1
2 it means there is some maximum value of the 

refractive index which is equal to 𝑛1 and if you increase 𝑥 slowly then the refractive index will 

decrease, this is how the profile look like therefore this is the parabolic index profile and the 

question asked for the derivation of ray path using ray equation, then how to do this. We will 



first start with the ray equation itself this is the ray equation which is given here with this 

expression.  

Now, we want to find the ray path. To find the ray path we will have to of course integrate this 

ray equation, therefore, integration is performed here it is a first order differential equation 

therefore we will have to integrate it only once to get the equation and we just did, we took the 

square root of left and right hand side and then integrated it with respect to, the left hand side 

is the integration with respect to 𝑥 while the right hand side is the integration with respect to z 

and here we substituted for the expression of 𝑛2 from the problem and this is the final 

expression which has to be integrated.  
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Now after a bit of mathematics we will end up with this expression. Now, the term in the 

bracket is a constant here 𝑛1
2 is constant, 𝛽 is independent of 𝑥, 𝛾 is independent of 𝑥. Therefore, 

we introduce a new parameter which is 𝑥0 and which replaces this term and here this term 𝛾 

and 𝛽 is again a constant therefore, we replace 𝛾/𝛽 = ⎾. After these two replacements the 

equation will look like this ∫𝑑𝑥/√𝑥0
2 − 𝑥2 = ±∫⎾𝑑𝑧, its easily integrable function and if 

we integrate it then you will get this relation 𝑥 = ±𝑥0𝑠𝑖𝑛⎾𝑧, Gamma is capital Gamma (⎾) 

here.  

This means that the ray path would be sinusoidal which says that ray path is like this and since 

the refractive index distribution is, let us choose a different pen to highlight things. Now, we 

know that suppose there is this axis of symmetry and the ray is going like this as per this 

expression. Now, the refractive index which is plotted here which is parabolic, this is our 

parabolic refractive index, this index is maximum at 𝑥 = 0 and if you move away from 𝑥 = 0 

the refractive index decreases.  

Now the same thing is here, x is equal to zero is this horizontal line, here refractive index is 

maximum and if you move up or down, this is your x axis, if you move up and up or down, 

then refractive index should decrease, as per the question. Now, if refractive index is decreasing 

if we are moving up or down, then we can now divide the medium and small strips and each 

upper strip is having lower refractive index as compared to the immediately lower strip and 

what will happen the ray which is going in this direction after getting refracted it will move 

away from the perpendicular to the interface and each moving away will ultimately give this 

the ray this path which is given by this red one, because we have this layered index, the ray 

initially start from this direction, this is the perpendicular it will tilt here, again tilt here and a 

situation will come where TIR (total internal reflection) will happen and then they will bend 

back.  

And this is how this graded index profile or parabolic index profile gives us a sinusoidal ray 

path. This is what happens in optical fibers or more precisely graded index optical fiber or 

parabolic index optical fiber. Due to this type of refractive index profile these optical fibers are 

able to guide the light along its length, this is an example of light guidance inside a medium 

but this guidance require a particular distribution of refractive index and once this distribution 

is given in this problem and therefore, ultimately we have this expression for the ray path.  
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Now, let us go to the next problem, the problem statement is consider an elliptical mirror. Now, 

the mirror is in the form of an ellipse. This is a mirror and whose inner surface is reflective, the 

inner surface of this elliptical mirror is reflective. Therefore, any source which is inside this 

elliptical mirror, if a ray start from the source the light will reflect from this internal mirror and 

it will be confined within the boundaries of the mirror, it will not go out, the inner surface is 

reflecting, the point to be noted is that the inner surfaces reflecting.  

Now, within this mirror this elliptical mirror there is a source 𝑆1 and an observer 𝑆2 make it a 

point or it is a source and 𝑆2 is observer and they both are placed on the foci of the ellipse as 

shown in the figure, as 𝑆1 as on one focus and 𝑆2 is on the second focus. Now, the question 

asks for exercising Fermat principle and then comment on a particular path, this ray path. In 

this ray path, the ray is emanating or starting from source 𝑆1 and then it is falling on a point B 

on the surface of the mirror and after reflecting from point B it goes to observer 𝑆2 and we will 

have to discuss this scenario in the light of Fermat principal.  

Now, let us go to the solution. Now according to Fermat principle, a light ray must traverse an 

optical path length that is stationary with respect to the variation of that path. If you remember 

we calculated the variance delta, we took delta of the length the optical path length and if it is 

not optimum then it should be zero, any variance in the path length should be zero or must be 

zero. Now, the length 𝑆1𝐵𝑆2, you see the light is a starting, the ray is a starting from 𝑆1 going 

to be and then coming back to 𝑆2.  

The length 𝑆1𝐵𝑆2 should be constant regardless of where on the perimeter B happens to be, 

what this statement says is that the path length 𝑆1𝐵𝑆2, it should be constant irrespective of the 



positioning of point B, irrespective of the point of reflection, if we choose another position for 

B, say B is here, then the this path which is starting from 𝑆1 going to be new B and then again 

coming back to 𝑆2, this 𝑆1, new B and 𝑆2 this must be equal to 𝑆1𝐵𝑆2 this is what Fermat said 

and this is exactly the property of an ellipse we know therefore, the length 𝑆1𝐵𝑆2 should be 

constant regardless of where on the perimeter B happens to be, B is the point of reflection.  

Now, the geometrical property of the ellipse is that angle of incidence is equal to angle of 

refraction. If you draw a perpendicular here then this angle must be equal to this, if you draw 

a perpendicular here then this angle must be equal to the angle of reflection. This is the 

geometrical property of an ellipse. And therefore, this property would be true or would hold 

irrespective of the location of B, irrespective of where exactly the point B is on the perimeter, 

B maybe here, B maybe here, B maybe here, irrespective of the position of the B this property 

will hold good because of the geometry of the ellipse and therefore, all possible optical path 

length will be same.  

All optical path from 𝑆1 to 𝑆2 via a reflection are therefore equal, they all will be same. We 

know that ellipse if you start from one foci and then goes to the perimeter and then comes back 

to the another foci then this path would be the same or if you take two nails and tie a rope 

between these two nails, and if the length of this rope is longer than the distance between the 

two nails, then if you put a pen here and then rotate it then it will form a ellipse which means 

this path length, the constant path length will form an ellipse, its locus would be an ellipse and 

this is the property of the ellipse and which is being used here in the elliptical mirror.  

Now, none is minimum since all the optical paths are the same, there is no minimum neither 

there is any maximum and optical path length is clearly stationary, we get any stationary path 

length with respect to the variations. Irrespective of the position of point B, we are getting the 

same path and which is the exactly is the Fermat principle, the path length should be stationary 

with respect to the variation in the path, we are varying the path still the path length is coming 

same again and again. It means that ray leaving 𝑆1 our source and striking the mirror will arrive 

at focus 𝑆2. Now, this is the discussion in the domain of Fermat principle of this figure.  

(Refer Slide Time: 14:53) 



 

Now, we will move to the next example, which is example number 3. And the statement here 

is a meniscus concave glass (thin lens) here, meniscus means our lenses in this form and it has 

radii of curvature of +20 centimeter and +10 centimeter which is of course true because if you 

form the first sphere from the left most refracting surface, it would be on the right-hand side of 

the refracting surface therefore, the radius of curvature would be positive and this is +20 

centimeter. Similarly, you can form the secondary sphere if you extend the curve and the 

second sphere is again on the right-hand side of this lens and therefore, it would again be the 

radius of curvature. This sphere would again be positive.  

If now, again I will reread the statement, a meniscus concave glass thin lens has radii of 

curvature of +20 centimeter and +10 centimeter, it means the two radii, the two spheres are on 

the right hand side of the lens here as depicted here in this figure. One has a radius of curvature 

of +20 centimeter and the second refracting surface as the radius of curvature of +10 centimeter 

and the refractive index of the glass material is 1.5. Now, the question is an object is placed 20 

centimeter in front of the lens, this is the axis and the object is placed 20 centimeter in front of 

the lens. Now, determine the final image location and describe the nature of the image this is 

what being asked.  

Now, we will exercise here the lens formula which 1/𝑣 − 1/𝑢 = (𝑛 − 1)(1/𝑅1 − 1/𝑅2),, n is 

replaced by 𝑛𝑙 which is the refractive index of the glass. 𝑅1 and 𝑅2 are the radii of curvature 

which are nothing but +20 centimeter and +10 centimeter. The object is placed at 20 centimeter 

in the object space therefore u would be −20 centimeter and then after substituting all these 

into this lens formula, we get the value of v which is the position of the image.  



Since v is in minus therefore, the image would be form on the left-hand side of the lens system. 

Now, once u and v are known, we know we can calculate magnification which is equal to v/u 

or which is equal to the height of the image upon height of the object, but here are the relevant 

quantities or v by u therefore, we will use this particular formula m is equal to v/u, will 

substitute for v and u and this gives the value of magnification as +0.67.  

We know that when magnification is positive it means that image is upright, the image is 

pointing upward, it is directed and the second information which we can draw from the value 

of magnification is that, that image is smaller than the object because m is less than 1, the 

magnification m is less than 1 and we know that magnification is the ratio between the height 

of object and image therefore, image will be smaller than that of the object and these points are 

written here, images virtual, upright and smaller than the object.  
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Now, let us move to the next example which is example number 4. The statement is as follows. 

A positive meniscus lens with an index of refraction of 2.4 is immersed in a medium of index 

1.9. The lens has an axial thickness of 9.6 millimeter and radii of curvature of 50 millimeter, 

50 millimeter for one surface and 100 millimeter for the other surface here, the radii of 

curvature 50 millimeter and 100 millimeter. Now it is being asked that compute the system 

matrix and so that its determinant is equal to 1.  

Now, to calculate the system matrix for a lens, we will have to calculate the refraction matrix 

for first surface and then the translation matrix for the space between the two refracting surface 

and then again refraction matrix for the second surface because lens has two refracting surface 



and then in the bulk of the lens in between the two reflecting surface there is a certain thickness 

in which the light ray travel, it translate.  

Therefore, we will have two refracting matrices and one translation matrix and all three matrix 

we will have to calculate now, and then we will multiply all these matrices, these three matrices 

to get the system matrix. Then first let us see how to get the matrix, refraction matrix for the 

first refracting surface, we know refracting, the refraction matrix is given by 1, −𝑃1, 0 and 1. 

𝑃1 is the power of the refracting surface which is nothing but (𝑛2 − 𝑛1)/𝑅 we will substitute 

for 𝑛2, 𝑛1 and R and this will give us this form of the refraction matrix for the left refracting 

surface.  

Now, we will calculate the translation matrix, this is the expression for translation matrix, 1, 0,  

D/n, and 1. D is the separation or thickness of the lens which is given as 9.6 millimeter, n is the 

refractive index which is given as 2.4, substitute for D and n and this gives the translation 

matrix here, translation matrix is here, the refraction matrix is here and this refraction matrix 

is only for the left interface, the ray refracted from the left interface and then it traveled inside 

the lens, it traveled through some thickness of the lens which is taken care of by this translation 

matrix and then again it refracts.  
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The second refraction is taken care by the second refraction matrix, here 𝑃2 is (𝑛1 − 𝑛2)/𝑅2, 

𝑅2 is the radius of curvature of the second refracting surface, 𝑛1 is the refractive index of air 

and 𝑛2 is refractive index of the lens material sorry, 𝑛1 is not the refractive index of the air 

since lens is not kept in air it is kept in a liquid of refractive index 1.9 therefore, we will 

substitute 𝑛1, we will replace 𝑛1, not with 1 but with 1.9 here, we will always have to keep this 

in mind and therefore, finally we get the expression of our refraction matrix, the second 

refraction matrix.  

Now, to get the system matrix we will have to multiply all these matrices, the multiplication is 

performed here and this is the final expression, this is the system matrix. And this is what being 

asked compute the system matrix and then show that its determinant is equal to 1, if this system 

matrix is correctly calculated then its determinant must be equal to 1 as we learned before and 

then here the determinant is calculated and we found that it is equal to 1 and this is all for this 

problem. 
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Then we will move to the next problem which is problem number 5, example 5 and the 

statement is show that the planar surface of a concave planar or convex planar lens does not 

contribute to the system matrix. I will explain the question for you. The question talks about 

two lenses, concave planar and convex planar. Now, what is concave planar and convex planar, 

one surface is like this, other is like this, this is one kind of lens, one surface is like this, other 

is like this, this is the second kind of lens, this is convex planar and this is concave planar, these 

are the two type of lenses which the question talks about.  

Now, it says that we will have to show, that the planar, this straight edge or this planar surface 

it will not contribute to the system matrix or alternatively the planar surface can be represented 

by your matrix which is a unit matrix, the multiplication of this matrix with the system matrix 

will not alter the system matrix. Therefore, ultimately, we will have to show the matrix for this 

planar surface is a unit matrix. Now, let us start with the assumption that 𝑅1 and 𝑅2 are the 

refraction matrices for the first and the second refracting surfaces respectively and if you have 

a lens and the light is travelling inside it then after refraction it travel through the width of the 

lens and this is a pure translation.  

Therefore, apart from the two refraction which happens at the two refracting surfaces, there is 

always a translation involved for a lens and therefore, we will also have to incorporate a 

translation matrix into our calculation. Therefore, to come up with a expression for a system 

matrix we have to calculate refraction matrix 𝑅1, 𝑅2 and translation matrix 𝑇12 and this 

translation matrix is from surface one to surface two. And once all these matrices are known 



then we can easily calculate the expression for system matrix which is nothing but this 

expression 𝑅2𝑇12𝑅1 this is what we want to calculate.  

Now, let us calculate the refraction matrix for a planar surface this is our concern, this is what 

the question asked for, the refraction matrix 𝑅2 which is for the planar surface, the second 

surface here, this will be given by 1, −𝑃2, 0 and 𝑃1. 𝑃2 is the power of the second refracting 

surface or the power of a planar interface, planar surface and we know the expression of 𝑃2, it 

is (𝑛1 − 𝑛2)/𝑅2. Now, what is 𝑅2, 𝑅2 is the radius of curvature of the refracting surface. What 

is radius of curvature of a plane? Of course, it is infinity, is not?  

Therefore, we will replace 𝑅2 with infinity. Once there is a infinity in the denominator the 

whole quantity here would reduce down to zero. Therefore, the matrix element would be like 

this 1, 0, 0, 1. And which is nothing but a unit matrix if you multiply this matrix with any other 

matrix the matrix will remain unchanged.  

The 𝑅2 will not affect therefore, the system matrix and this is what was being asked here or we 

were asked to prove this that the planar surface does not contribute to the system matrix and 

we prove it here because the planar surface has a matrix which is a unit matrix and therefore, 

it will not alter the system matrix and the system matrix, the resultant system matrix will be 

𝑇12 into 𝑅1, 𝑅2 is missing, 𝑅2 is nothing but a unit matrix this is all for equation, example 5 or 

problem 5.  
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Now, we will move to next problem and which states that write an expression for the thickness 

of a double convex lens whose focal length is infinite. You have a double convex lens and it is 

asking for the thickness of a double convex lens, it means it is a thick lens and what is given, 

given that the focal length of this double convex lens is infinite, f is equal to infinity, this is 

given and the question is being asked for a thick lens. Therefore, we will apply the formula for 

focal length of a thick lens and this is the formula focal length for a thick lens. This is the usual 

formula and there is an additive term which is there due to the finite thickness, for a thicker 

lens we add this term.  

Now, as is given f is equal to infinity and therefore we will replace the left-hand side of this 

expression by zero because f is in the denominator and then we will write the right hand side 

as it is. After a bit of simplifications, we can get the expression for the thickness which is 

nothing but 𝑛(𝑅1 − 𝑅2)/(𝑛 − 1), this is the expression for a double convex thick lens whose 

focal length is infinity, infinite.  
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Now, moving to the next problem, the statement here is the system matrix for thick biconvex 

lens in air is given by, biconvex lens this type of lens and it is thick here, thick biconvex lens 

in air is given by this matrix here, this matrix give the system matrix of this biconvex lens in 

air. Now, knowing that the first radius is 0.5 centimeter here 𝑅1 =0.5 centimeter that the 

thickness is 0.3 centimeter, the thickness of this is 0.3 centimeter and the index of the lens is 

1.5 centimeter, the refractive index n is equal to 1.5 sorry, not centimeter. It is the refractive 

index, it is unitless quantity. Let me correct it, refractive index is 1.5 here, what is being asked, 



find the other radius this is unknown, the radius of curvature of the right refracting surface is 

being asked.  

The system matrix is given and we know that this term which is sitting on the corner, it has the 

information of focal length and we will start from here 𝑎12 which is nothing but this corner 

term, this is equal to −1/f and we know the formula for a thick lens, which we just used in our 

previous example, we will just write this formula here. The value of 𝑎12 is known from the 

system matrix which is equal to −2.6, just substitute for 2.6 we know the refractive index of 

the lens which is 1.5, 𝑅1 is known, substitute for 𝑅1, 𝑅2 is not known, you have to find it out. 

Then substitute for n, t, n and 𝑅1 and 𝑅2 sit as it is.  

Now, if you solve it, then it gives the value of 𝑅2 = −0.25 which is correct here. If you just 

make a circle here, this sphere would be on the left-hand side of the refracting surface. 

Therefore, the minus is correct here, the radius of curvature should be equal to −0.25. These 

are the examples, which I put to clarify a few concepts which we learn in last few lectures or 

which we learn while learning the topics of geometrical optics and this is all for this lecture. 

And I end this class here and see you in the next class. Thank you. 

 

 


