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Charge Carrier Dynamics in Semiconductors

Welcome everyone.  In  our  last  lecture,  we have  learned  that  why first  like  some

materials are metals some of them are semiconductor and some of them are insulator.

And  just  in  the  previous  lecture,  we  have  learned  that  the  different  classes  of

semiconductor based on the doping, based on the band gap, on the positions of the

periodic table.

So we have now a fairly good idea about the semiconductor and very often we are

talking about the charge carriers. But the question is how can we calculate this charge

carriers.  Because  this  charge  carriers  plays  a  very  important  role  in  photovoltaic

devices. So today we will calculate the number of charge carriers in a semiconductor.

And  from  there,  we  will  find  out  the  charge  carrier  concentrations  in  a  pure

semiconductor and in extrinsic semiconductor.
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So charge  carrier  generation  and  recombination  in  semiconductors.  To obtain  the

electron density in an intrinsic semiconductor, we first evaluate the electron density in

an incremental energy range dE. This density N(E) is given by the product of density

of states g(E) that is the density of allowed energy states per unit energy range, per



unit volume and by the probability of occupancy that the energy level that is called the

Fermi distribution function F(E).

So  if  N(E)  is  the  total  number  of  the  electron,  so  how can  I  get  this  N(E)   by

multiplying the density of states which I have written as g(E). You can as well right as

dE or rho E. Different textbook use different version of this, but here we are using

g(E) times the Fermi-Dirac probability functions. So it is somewhat like that. Like let

us say like you know in a classroom, there are total of 50 students.

Or for example there are a total of 60 students are there and there are 30 benches in

that classroom and each benches can occupy maximum of two students. So if I say or

if someone say that in that class there are 60 students is there and there is a class

happening on Monday from let us say 10 to 11 o'clock, and in the classroom A there

are 30 benches are there. So then how many students are there present at this class?

So we cannot say unambiguously there are 60 students in the class. So basically, it

depends upon what is the probability of turnover of the students in the class and how

many chairs or how many benches are available to them to sit down. So if I know the

number of available benches, so let us say there are 30 benches in the class. So the

number of available bench is 30.

And if I know that the class is very popular or the subject is very interesting then the

all the students turn out to the class, then the probability of turning out all the students

is maximum that is hundred percent, and each of the bench can occupy two students,

then we can say that the maximum number of students in the class today is 60.

So it depends upon first the number of available bench, here the number of density of

states and it depends upon the probability of coming the students in the class, here the

Fermi-Dirac  distribution  functions.  And  just  like  if  you  multiply  the  number  of

available benches in the class times the probability of the student coming that is equal

to the total number of students.

In this case of semiconductor the density of states, which is giving you the number of

available energy states per unit energy range per unit volume times the probability of



occupancy that is Fermi-Dirac distribution function f(E), when I multiply these two

things together, that gives the number of students. Here the number of electrons N(E).

Thus the electron density in the conduction band is given by integrating g(E) and f(E)

over an energy interval dE from the bottom of the conduction band to the top of the

conduction band. So I can write N(E) is equal to integration g(E) times f(E) into dE.

Now previously we have calculated what is the expression for g(E).
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And we know that for a three dimensional case, this density of g(E) is proportional to

E the power half for a three dimensional material. For a two dimensional material, it

was constant E to the power zero and for a one dimensional material it was E to the

power minus half. And for a zero dimensional material it was a delta function. But we

are considering real semiconductor which is a three dimensional material.

So density of states is proportional to E to the power half. And the proportionality

constant was this. One over 2 pi square 2m e by h bar square to the power 3 by 2. And

if we consider E c is the bottom of the conduction band, so then we can modify this

equation E as proportional to E minus E c to the power whole half. And that is what

we have written here with the constraint in the beginning.

So g(E) is one over 2 pi square 2m e by h bar square whole 3 by 2 E minus E c to the

power half  dE. That is that density of states in three dimension. Now what is the

probability of occupancy? The probability that an electron occupies an electron state



with energy E is given by the Fermi-Dirac distribution function, which is also called

the Fermi distribution function. And what is that Fermi distribution function?

F(E) is equal to 1 divided by 1 plus e to the power E minus E F by kT where k is the

Boltzmann  constant  T is  the  temperature  and  F  is  the  Fermi  energy. Now if  we

consider that E – E F is very very greater than kT so then what will happen? this terms

e to the power E – E F by kT that will be higher than 1 or much greater than 1. So we

can approximate f(E) in this limiting situations as 1 by e to the power E minus E F by

kT or we can write this if it goes up e to the power minus E by E F divided by kT.

That is what we have written here f(E) is e to the power –E – E F by kT. So now our

next job is to multiply this terms and this terms and integration over the all available

energy range. So N the total number of electrons is integration E c to the infinitive.

Why is it to infinity. Remember, if this is my conduction band, so this is the E c the

bottom of the conduction band.

And for the sake of argument, we are integrating it towards the infinitive. So we are

going upward directions. And my first factor is e to the power minus E minus E F by

kT, that is the Fermi function and then the density of states. This is f(E) and this is

your g(E) times dE. Now we need to integrate this equation. Looks like probably like

you know very nasty integration to do it.

But we will see that is not so difficult to do it. So some of the terms are constant. Let

us look at the previous equation once again. So you have one over 2 pi square 2m e by

h bar square to the power 3 by 2 that is all are constant. So we can take all these terms

outside the integrant. That is what we are doing here.
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We are taking one over 2 pi square 2m e by h bar square 3 by 2 outside the integrant

and  integrating from integration E c to infinity, e to the power E – E F by kT into e to

the power E – E c to the power half dE. Now we will do some simple approximation.

So let us consider E – E c by kT = x. That is a favorite tool we do when we do the

integration. So then E – E c will be xkT. The kT at the bottom will go up.

And then if I integrate it, E c is a constant that is a value, the bottom of the conduction

band.  So it  will  be zero if  I  differentiate  it,  so only giving dE that is  dx into kT

because kT is a constant. So then you can write N is equal to 1 over 2 pi square 2m e

by h bar square 3 by 2 integration. Now since I am changing the integration limit, I

can also write integration E c to infinity as zero to infinity.

E to the power minus, now I have considered E - E c by kT = x or E – E c = xkT. So

then this terms here E has to be replaced from the expression here, right? Because

now your E – E c = xkT. Or your E = E c + xkT, right? So that is what we have

written  here.  So E -  E F instead  of  E we have written  E c  + xkT okay? So the

bracketed expression, if you write this bracketed expression.

So this is E to the power minus what was there E – E F so that we can write e to the

power E c plus xkT minus E F, right? Or this minus, minus plus. So we can also write

this as e to the power E F – kTx – E c by kT. Because we have one more terms kT

here at the bottom. So basically when you do e is equal to E c + xkT then we have to

divide it by kT.



So you have to also divide it by kT and that is what we are doing it here. So again you

look that this term is a constant, this term is a constant. So if this comes out, so N is

equal to 1 over 2 pi square 2m e by kT h bar square 3 by 2 e to the power minus E F –

E c by kT  integration 0 to infinity. Now x square x to the power half e to the power –

x dx. X to the power half e to the power minus x dx looks like a standard integral,

right?

So N is 1 over 4 pi square 2m e kT by h square 3 by 2 e to the power E F minus E c

by kT. All these terms see it looks like a constant. And then integration zero to infinity

raised  to  the  power  half  e  to  the  power  minus  x dx.  Life  becomes  more  simple.

Integrating these terms is easier. Now instead of all these constant all these things, if I

call all this constant term by N c so this is N c then I can write N is equal to N c e to

the power E F minus E c by kT.
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Where N c is 1 by 4 2m e kT pi h bar square 3 by 2 and n is 1 by 4 2m e kT by pi h

bar square 3 by 2 e to the power E F minus E c by kT. Now this was the electron

density. Similarly we can find the hole density. Now the total probability density is 1

so the probability of occupancy of an energy level by an electron and hole is one. So

if the electron probability density or the occupancy of the probability of an electron at

an energy E is f (E).



Then the probability of occupancy of a hole of occupying the same energy level will

be 1 – f (E). So for calculating the hole density in the valence band one can calculate

P (E) is equal to integration g (E) 1 – f (E) dE because that gives the probability of

occupancy of a hole times the density of states. And by approaching or by following

the same treatment as you have done in the case of the electron, we can also find out

the concentration of the hole in the valence band.

And whereas P (E) is 1 by 4 2m e by kT pi h bar square to the power 3 by 2 e to the

power E V minus E F by kT. It can also be written as P (E) is equal to N V e to the

power E v minus E F by kT. So you look that in the last slide, we have written N is

equal to N c e to the power E F minus E c by kT and  how it was coming from?

We have considered these as a constant and this was a standard integral which was

like gamma function and from the gamma function value we have substituted this

standard integral value here and doing by simple calculations and simplifications we

got the value of the electron density like this is N is equal N c e to the power E F

minus E c by kT.

And we got the hole density in the following slide P (E) is equal to N v e to the power

E v minus E F by kT.  So now we have the electron concentration in the conduction

band and we have the hole concentration in the valence band.
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Whereas the constant N V was 1 by 4 2m e kT by pi h bar square to the power 3 by 2.

So by assuming both electron and hole concentrations are equal, we can write that e to

the power E F minus E c by kT is equal to e to the power E V minus E F by kT

because at equilibrium the number of electrons should be equal to a number of holes.

Hence, you can write the Fermi energy E F as E c plus E V by 2.

So for an intrinsic semiconductor where you have the same number of electrons as the

number of holes the Fermi energy lies in between conduction band and valence band.

For  an  intrinsic  semiconductor  the  number  of  electrons  per  unit  volume  in  the

conduction band is equal to the number of holes per unit volume in the valence band.

That is the n = p and you can also write that the number of electrons or number of

holes  in  an  intrinsic  semiconductor  as  n  subscript  i,  where  i  stands  for  intrinsic

semiconductor. So n i actually intrinsic carrier density. So intrinsic carrier density n i

that is equal to n = p. So since there are both electron and both hole so we can write

that n i times n i or n i square is equal to n into p.

So n i square is equal to np or np = n i square. That is called the law of mass action,

very important law in the case of semiconductor.
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So from the above simplification for the intrinsic carrier density n i, it is obtained as n

i square is equal to np or n i is equal to the it will be square root of electron density

times hole density, okay. So if I write n i so we have already calculated what is n what



is p so that is square root of N c into N v e to the power minus E g by 2kT where n i is

equal to 1 by 4 2kT by pi h bar square to the power 3 by 2 m e m h to the power

whole 3 by 2 e to the power minus delta by 2kT.

Where delta is the width of the energy gap and delta is equal to E c minus E v where

E v is the energy of the valence band and E c is the energy of the conduction band.

Once we are able to calculate what is the intrinsic carrier concentration, then let us

move to how does the current density and mobility change in an intrinsic carrier.

Because for constructing a solar cell device, both the current density and the mobility

of the material plays an important role. When a small electric field is applied to a

semiconductor  sample,  each  electron  will  experience  a  force.  And  they  will  be

accelerated along the field during the time between the collisions. So you apply an

electric field to the electron, so they will be accelerated.

In which direction they will be accelerated? They will be accelerated along the field

direction. Therefore, an additional velocity component will be superimposed on the

thermal motion of the electrons. So the thermal motion of the electron has a particular

velocity, its random. Now due to the external perturbation which is the electric field

here, there is an induced velocity.

So  that  will  be  superimposed  with  the  velocity  due  to  the  thermal  motion.  This

additional component is called the drift velocity. So the drift velocity so that depends

upon the  external  electric  field.  If  I  increase  the  electric  field,  drift  velocity  will

increase. If I decrease the drift velocity, drift velocity will decrease.
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So another way we can write that drift velocity is proportional to the electric field E,

right?  So drift  velocity  of  the  electrons  and  hole  if  you denote  as  V e  and  V h

respectively then V e can be written as mu times e and V h can be written as mu h

times E where e is the electric field and mu is a quantity which is called the mobility

of the charge carriers, which is from this equation can be defined as the velocity of the

charge carrier per unit electric field.

You look at this genetic expression of both of this electron and hole case. So we can

write that V e is equal to which will be mu times electric field. So mu is the mobility

and e is the electric  field.  So what is  mu? Mu is equal to V divide by E. So the

definition of the mobility is the velocity per unit electric field. Now for the case of

electron you put a subscript e, for the case of hole you put a subscript h.

So that is what we have written here. V e is equal to mu e times E; V h is equal to uh

times E. Now in the case of semiconductor we know both type of charge carrier exist;

electrons and hole. So the conduction happens due to the both type of charge carriers.

So that is why the semiconductor had two different kinds of mobility, mobility due to

the electron mobility due to the hole or electron mobility and hole mobility. There are

experimental methods to measure this mobility also.

(Refer Slide Time: 18:18)



Since the type of drift of electrons and holes under the action of the electric field or

the applied field is different in an intrinsic semiconductor or in a pure semiconductor,

under the influence of electric field, moves in an empty conduction band where this

holes moves in a field band so the electron mobility is different or greater than from

the hole mobility.

So  what  we  are  saying  here  that  for  a  pure  semiconductor  or  an  intrinsic

semiconductor  we know that  under  the  influence  of  an  electric  field  the  electron

moves in a empty conduction band. So if this is your valence band and this is your

conduction band, this is your valence band and this is your conduction band, right? So

the electron moves from the valence band to the conduction band.

And there is a vacancy is being created here. That is hole and that is electron and this

is  hole.  Now the conduction band is  usually  empty and valence  band is  hole.  So

electron is moving in an rather emptier band whereas the holes is moving in a filled

band. So that is why the mobility of the electron is usually higher than the mobility of

the hole.

If n is the density of electrons in a conduction band of semiconductor, then net charge

per unit volume available for conduction of the electric current will be n times e; n is

the density of electrons and the charge carrier or the elementary charge carrier is e. So

if I multiply n times e, so that will give you the amount of charge per unit volume

which is available for conduction in the unit volume.
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So the drift velocity J e, which is due to the electron that is defined as the charge

flowing across the unit area of cross section per unit time, due to their drift under the

influence of applied E can be defined as J e is equal to ne times V e. So remember ne

here n is the electron concentration e is the charge carrier. So that gives you the charge

carriers or the total amount of charge per unit volume.

When I multiply it by the drift velocity so that in an unit times so drift velocity if it is

V e if the time is unit like one second, so that gives me the distance L. So if I multiply

that drift velocity with the charged amount per unit volume, that gives me the drift

current density J e. Where V e was mu times e and if we substitute these values of V e

in this  particular  expression,  I will  get the drift  current density J e is  equal to ne

instead of V e I put mu e into E.

So it will be ne mu e E. Similarly for hole we can write the drift current due to the

hole is pe mu h e. Look, both of the equation are same. Both of the current density is

proportional to the electric field because now electron the drift velocity is due to the

application of the electric field and due to the electric field, there is a mobility of the

electron.

In the case of electron it is the electron mobility, in the case of hole it is the hole

mobility.  But  either  electron  or  hole  both  of  them  the  charge  is  the  same,  only

difference is the sign. One of them is negative another is positive. So if you take the



absolute values of the magnitude, so I can write the magnitude of the charge here also

e and here also e.

And in the case of the electron you put n the charge carrier concentrations here you

put the p that the hole carrier concentrations. But in intrinsic case, we know n is equal

to p is equal to n i. Both of them are equal to the intrinsic carrier concentration. So the

total current density due to the drift of the electrons and holes will be j is equal to qEn

i.

So if I take this quantity n and p is equal to n i so I can write that total current density

is due to the electrons and hole ne mu e E plus p e mu H E, right? But you can write

that n and p in an intrinsic carrier as n i. So basically this is n i e mu e E plus n i e mu

H E, right? Now what is the n i times e? That is the intrinsic carrier concentration

times the charge. So that is the total charge.

So if I write the total charge both of this expression has n i times e. So I can take n i

times e as a common. I can take also the electric field as common. So what is left

inside the bracket is mu e times mu H. This is the capital H. You can also write it as a

small h. Let us change it for the consistency to the small h where h stands for hole; n i

times e that is Q.

So Q or you can also write small q whatever you prefer QE mu e plus mu h. That is

what we have written here. The total current density due to the drift is QE n i into mu

e plus mu h. So either you can put a small qEn i or you can replace this q into n i as a

big Q or some people also prefer to write it as a n i and then instead of E you write it

as a q so that it represents both the electron and hole charge E mu e times mu h, clear?

Now once we have a concept of what is a P-type semiconductor and what is an N-

type semiconductor and we have learned that semiconductor has two different types

of charge carriers, namely electrons and hole. Now we can go forward and construct a

p-n junction devices. When light shines on solar cell photo voltage is generated.
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The generated voltage across the solar cell can drive the current in an external circuit

and therefore can deliver power. In order to collect the energy of a proton in the power

of  electrical  energy through solar  cells  the  following series  of  action  should  take

place. First increase in potential energy of carriers, separation of carriers. Among this

task a is preferentially efficient by a semiconducting material.
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In  order  to  perform  the  task  b  separation  of  charge  carriers  asymmetry  in  the

semiconductor device is required. Combination of a p-type and n-type semiconductor

or a p-n junction has such kind of asymmetry which provides a built in electric field at

the junction. So to construct a solar cell devices, there are two properties has to be

satisfied. What are those two properties? Let us once look back.



One of them increase in the potential energy of the carriers and that a semiconductor

can do efficiently. And the second thing is that separation of charge carrier. Because

unlike in the case of conductor where the electron was the dominant charge carrier,

here I have two different type of charge carrier. One is electron another is hole. Now

they can be bound.

And you remember we have defined them earlier as an exciton and the binding energy

which bound them together they are called excitonic binding energy. Now they can be

bind. Now this unless until this bound charge carrier separates and available for the

pre conduction, I do not get a current in the external circuit. So it is very important to

separate this charge carriers.

Now how can you separate this charge carrier? We can separate the charge carriers

only if we introduce  asymmetry in the devices. And the only way we can introduce

asymmetry in the devices by constructing a p-n junction devices. And that is why we

make a p-n junction device and if I simplify a solar cells basically this is nothing but a

p-n  junction  device  with  a  particular  geometry. So  introduction  to  a  p-n  junction

device in equilibrium condition.
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A p-n junction is formed when a p type semiconductor is brought in together with an n

type semiconductor. Ideally n type and p type semiconductors of constant doping can

be brought together, but in practice one type of impurity is thermally diffused into a



piece of semiconductor which has doping of opposite kind of impurity. So let us say I

have a p type semiconductor and I have a n type semiconductor in hand.

And the question is, if I just fuse them together should I make a p-n junction diode?

The answer is no. What it is told here, although ideally we expect that n type and p

type semiconductor the constant doping can be brought together in reality what is

done that one type of impurity is thermally diffused in an already existing impurity.

We start with p type impurity or n type impurity and then diffuse the p type impurity

in that material. Because later on we will learn that the construction of the band gap or

the depletion region at the p-n junction plays a very important role. That is why we

simply cannot stitch a p type and n type semiconductor to make a p-n junction diode.

So here like you know we are plotting the doping of the semiconductor on the y axis

and the depth from the surfaces x axis. So basically, if we start with an N A which is

an acceptor impurity, then you put the donor impurity and you form a metallurgical

junction at the boundary. That is the ideal p-n junction, which is like a step function.

But in a real p-n junction the doping of the concentration and depth from the surface

is not as straightforward like that. Here you have an acceptor and you have a donor

but there is a changing or the gradient here. The metallurgical junction is here. This is

the n type. This is the acceptor impurity, this is the donor impurity and that is not as

rectangular nicely shaped function like that.

Because you grow that semiconductor and very often it is very controlled. Although it

is nowadays because of the improvement of the technology it is precisely possible to

grow the semiconductor very nicely. And you can control even the width of this p type

and n type layer.
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So what is a space charge region? It is, in an isolation a p type semiconductor has a

large number of holes as compared to electrons. An n type semiconductor has large

number of electrons as compared to holes. When two materials come in contact with

each other there is a difference in the both type of carrier concentration from one side

to another. As a consequence of this difference, diffusion of the charge carriers occur.

So due to the diffusion of holes from the p to n side they have behind a fixed negative

charge in the form of ionized accepted impurity. And similarly, when electron diffuse

from n to p side they leave behind positively charged donor impurity. But how it

happens, how it exactly form and how it can influence the energy momentum diagram

or the potential energy diagram that we will learn in the next class. Thank you.


