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Welcome everyone. You remember in the last class we have started discussing about

some preliminary concept of quantum mechanics. So what we have learned that the

particle  in an infinite  square well  or particle  in  a box problem, how to solve the

energy eigenfunction and how to get the wave function for that particular case. Very

often that is mentioned as quantum free electron theory.

In today's lecture we will learn about how this concept can lead to the formation of

band gap or how there are three different kind of solids namely semiconductor, metal

and insulator exist.

(Refer Slide Time: 01:17)

In free electrons theory, according to the free electron theory, the conduction electron

moves in a region of constant potential inside the crystal. They are completely free to

move inside the crystal, but restrained by the surface of the crystal. So what is the

difference between classical free electron theory and quantum free electron theory? In

classical free electron theory we also consider that electron are free to move around

inside the crystal, but electron gains energy when we hit them.



But  the  classical  free  electron  theory  was  not  successful  to  explain  many  of  the

phenomena in solid just like electrical conductivity, thermal conductivity etc. But in

quantum free electron theory, we consider again the particle in a box but here particle

is free or moving in a constant potential inside the box. Only constraint on the particle

is that it is confined in the boundary with boundary has an infinite potential or where

the wave function does not exist.

So this problem actually explains pretty well many of the phenomena of the metal like

electrical conductivity, thermal conductivity and then electrical paramagnetism etc. So

this theory explains successfully the phenomena of electrical conductivity, electron

emission, electron paramagnetism etc. But this theory fails to explain why some of the

conductors, some of the solids are good conductor of electricity and some of them are

bad conductor of electricity.

That means why some of the solids are conductor, some of them are insulator or why

some of them are even semiconductor. So that means, the physical properties of the

semiconductor cannot be explained by this theory. Secondly, the positive value of the

whole coefficient also cannot be explained by the free electron theory. So where is the

problem coming from? In the free electron theory, it is an ideal approximation.

We consider that electron moves in a constant or almost free potential inside the solid.

But in the practical, in the real life the situation is not like that. The electron moves in

a potential which has a periodic form. So in a real crystal solid, we need to modify

this problem keeping in mind that the electron not moves in a constant potential, but it

moves in a periodic potential. That we will discuss in this class.
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The behavior of electron in a periodic potential. Electron has well defined mass and

when accelerated by electric field, it obeys Newtonian mechanics. But the behavior of

electron  is  differently  when  accelerated  in  a  crystal,  why?  Because  in  a  one

dimensional periodic crystal, there is a periodicity in the potential.  And because of

that  the  electron  interacts  with  the  lattice  site  and  that  modulates  the  energy

eigenfunction as well as the wave function.

The one dimensional periodic crystal potential is shown in the following figure. As

you can see this is a very ideal potential where the z plus this is showing the positive

ion cores. And the distance a is the lattice spacing. That is the distance between two

successive lattice sites. This potential is arising due to the periodic distribution of the

positive charge associated with the ion cores situated on the lattice sites inside the

crystal plus the constant distribution due to all other free electrons of the crystal.

This is very complicated case. So for this particular kind of potential if I need to solve

the  Schrodinger  equation  if  we  remember  like  the  one  dimension  Schrodinger

equation if I write down once again here so this will be like this. So here V is my

constant potential in the case of an infinite square well potential. But in this particular

case, V has this particular complex geometry.

So  it  is  very  difficult  to  incorporate  this  exact  nature  of  the  V  and  solve  the

Schrodinger equation to get my E and psi. To get rid of this problem Bloch came

across with a solution. What he said that in this kind of periodic lattice, the wave



function is also modulated by the periodicity of the crystal lattice. In order to find out

the motion of the electron in a crystalline solid Bloch has solved the Schrodinger

equation for periodic boundary condition.

(Refer Slide Time: 06:05)

So you remember in the case of particle in a box problem or in free electron theory,

we have the potential is in finite at the two boundary. That means wave function does

not exist at the two boundary. But here we have periodic boundary condition. This

kind of model is also called nearly free electron theory. The Schrodinger equation for

an electron moving in a one dimensional constant potential V 0 is given by d 2 psi d x

2 plus 2m by h bar square E minus V naught psi is equal 0.

Here your V naught is either zero or constant potential and we all know what is the

solution of this equation. The solution of this equation is psi x is e to the power plus

minus  ikx.  So  this  is  basically  nothing  but  a  traveling  wave  which  has  equal

probability  to move in the forward direction or backward direction.  Remember, in

quantum mechanics we consider the electron as a wave.

So associated with every electron there is a electron wave and now this electron wave

is interfering with the crystal lattice site. So here the kinetic energy E is E minus V

naught, right? Because E is equal to total energy that is kinetic energy plus potential

energy. E is  your kinetic  energy plus potential  energy. Here potential  energy is V

naught.



So if I subtract E minus V naught I will get the kinetic energy of the electron. So E

kinetic energy is E minus V naught and that we know is h bar square k square by 2m

or is equal to p square by 2m. That was the case of a free electron theory. But in a

periodic crystal lattice the potential is also periodic.

(Refer Slide Time: 08:00)

So what we have to do, we have to introduce the periodicity in the potential and that

we have done here. The potential of energy of the electron in a crystal lattice satisfies

the following equation V x = V(x + a) where a is the periodicity of the lattice. Now

for the periodic potential, the Schrodinger equation is converted to d 2 psi d x 2 plus

2m by h bar square E minus V x psi is equal to zero.

Remember, here this V x has this form. Here the wave function psi x of the electron is

psi x is e to the power plus minus ikx times u k x where u k x has the periodicity of

the crystal lattice, u k ( x) = u k ( x + a). So if you look at this solution very closely,

so, you see this has a traveling part e to the power plus minus ikx modulated by a

periodic function u k x.

So here the solutions are plane waves modulated by the function u k which has the

same periodicity  as  that  of  the  lattice.  Hence  psi  x  is  known as  the  Bloch wave

function.  So  here  in  the  periodic  crystal  lattice,  the  solution  of  the  Schrodinger

equation psi x we call it as a Bloch function or Bloch wave function. And what is a

Bloch wave function? This is e to the power plus minus ikx into u k x where u k x has



the  periodicity  of  the  crystal  lattice.  So  Bloch  gave  this  theory  to  solve  the  one

dimensional crystal lattice problem.

(Refer Slide Time: 09:36)

But if you look our original potential, which was like this with a positive ion core

right with a positive ion core in between and there is a periodicity of a. That was the

real potential in a crystal looks like and considering that Bloch has given an empirical

condition  and  how  Bloch  came  across  with  the  solution?  By  considering  the

translational symmetry.

Later on, we can see that this Bloch wave function is also an eigenfunction of the

translational operator. Translational operator plays a vital role in solid state physics.

We can show that translational operators and the Hamiltonians that is the total energy

they commute. From that we can come across with the solution of the Bloch wave

function. But still we have complexity in our solutions.

So this particular case where the potential looks like this is very complex although not

completely  impossible  to  solve.  To get  rid  of  this  Kronig  and  Penney  the  two

scientists they came across with a simplified model for solving the electron in an one

dimensional  periodic  crystal  lattice  where  they  consider  the  potential  well  as  a

rectangular well or a square like this and this is called Kronig-Penney model.

So Kronig-Penney model consider here the electron in an one dimensional periodic

crystal lattice. So instead of a gradually changing potential in a real crystal case, here



the  potential  is  changing  like  a  step  function.  This  kind  of  problem  is  solvable

mathematically more easily than the real life problem. And we can show later on that

this problem pretty much explains most of the phenomena of the solid and many of

the three dimensional phenomena can also be explained using this model.

So similarly solve Schrodinger equation for a rectangular array of potential which is a

Kronig-Penney potential, a complicated expression for the allowed energies in terms

of k of the electron is obtained which shows that energy occurs at the value where k is

equal plus minus pi by a, plus minus 2 pi by a, plus minus 3 pi by a. That means plus

minus n pi by a where n is the integer.

So what does it physically mean? Let us go back to our original Bragg reflection. In

the crystal lattice electron undergoes Bragg reflections. So from our undergraduate

science,  we have learnt about how the Bragg equation looks like.  In a crystal  the

Bragg equation looks like 2d sin theta is equal to n lambda where n is the order of

reflection. Now in a one dimensional lattice theta is equal to pi by 2.

So sin pi by 2 is 1. So this equations gives you 2d is equal to n lambda, right? Now

lambda the wavelength associated with an electron can also be written in terms of the

lattice vector. The real lattice in many times we convert it to a reciprocal lattice by

doing some mathematical transformation and this kind of transformations helps us to

calculate different parameters of the lattice very easily.

So instead of lambda we can also write this as n 2 pi over a where this 2 pi over a we

have written in a reciprocal lattice space. This 2 and 2 cancels out giving you d is

equal to n pi over a, right? Now n is an integer and it gives you the order of reflection.

If you put n is equal to 1 the first order reflection so your d is equal to pi by a. Now

these values of pi by a, since the crystal has a translational symmetry so plus pi by a

and minus pi by a electron wave can move in both directions.

So  at  these  sites  plus  minus  pi  by  a  electron  wave  undergoes  Bragg  reflections.

Whenever it undergoes Bragg reflections they form a stationary wave. And in the next

case, when it comes at the value of the wave vector plus minus 2 pi by a again it



undergoes Bragg reflections. So then again it forms a stationary wave. So at this place

plus pi by a and plus 2 pi by a crystal is forming standing waves.

We can show that at the position of pi by a, plus 2 pi by a or plus 3 pi by a we can

form standing waves.  Since  there  are  waves  there  are  energy associated  with  the

waves and in the between place where there is no wave or where we cannot solve the

Schrodinger equation that give rise to the energy band gap. So this figure shows a

Kronig-Penney potential, a simplified potential in one dimensional crystal lattice.

You see that this is the V naught the height of the potential barrier. From this point to

this point we defined a and the width of the potential barrier is considered as b, okay.

(Refer Slide Time: 15:19)

If  we draw now the energy versus k diagram in the Kronig-Penney model so what we

can  show  that  at  the  values  of  pi  by  a  and  minus  pi  by  a  the  way  function  is

discontinuous that means at this point there are stationary waves formed. The next

stationary wave formed at here. We have the allowed energy solutions between minus

a to plus pi by a.

We have again the allowed energy values of Schrodinger equation from 2 pi by a pi

by a to 21 pi by a and on the left hand side minus pi by a to minus 2 pi by a. But in the

between region here, Schrodinger equation does not have any solution. That give rise

to  the  forbidden  energy  band or  band  gap.  This  is  the  energy versus  momentum

diagram okay for an electron in a Kronig-Penney potential.
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Here the energy of the electron increase continuously from 0 until  the value of k

reaches to pi by a. But at the values of k plus minus pi by a, plus minus 2 pi by a or

plus minus 3 pi by a, the electron gets reflected. So at k is equal to plus minus n pi by

a Bragg reflection condition is satisfied. An electron suffers Bragg reflection at n is

equal to plus minus 1, plus minus 2, plus minus 3.

And they correspond to first order, second order and third order reflection. The range

of allowed values of k from minus a to plus a known as the first Brillouin zone.

(Refer Slide Time: 16:44)



So if we go back to our earlier site so the region between minus pi by a to plus pi by a

this region is called the first Brillouin zone or FBZ. So the region k values from minus

pi by a to plus pi by a is known as the first Brillouin zone. The second Brillouin zone

is consist of two parts extending from pi by a to 2 pi by a and the second part is on the

negative side minus pi by a to minus 2 pi by a, okay. So origin of energy gap.

(Refer Slide Time: 17:21)

Assume free electrons moving in a periodic potential of iron cores. Now we consider

now this iron cores provide a fairly weak perturbation. So this is a almost nearly free

electron theory. Now for the Bragg condition in an one dimensional solid we know in

direct space it is 2D sin theta is equal to n lambda. But also we can write down the

Bragg reflection condition in reciprocal lattice space.

In reciprocal lattice space Bragg condition is that k plus G whole square is equal to k

square. You look that k is the wave vector. For diffraction of the wave vector k in one

dimension it becomes k is equal to plus minus half G is equal to plus minus n pi by 2

where G is equal to 2 pi n by a and this is called reciprocal lattice vector. So k is your

wave vector and G is your reciprocal lattice vector where G is equal to 2n pi by a.

You can starting from the Bragg equation in direct lattice space that is 2 d sin theta is

equal to n lambda. If you convert this equation in a reciprocal lattice space one can

also write down that the Bragg condition like that k plus G whole square is equal to k

square. The first reflection and the first energy gap occurs here at k is equal to plus

minus a, pi by a.



The region in k-space between minus pi by a and pi by a is called the first Brillouin

zone of the lattice.  Other gaps occurs for the other value of the energy integer n. So if

we know plot the how does the energy momentum band looks like for a free electron

theory and for a nearly free electron theory.  So it is the following.

(Refer Slide Time: 19:08)

For a free electron theory, energy versus k diagram is almost like a parabola. But in a

nearly free electron theory electron does not move in a constant potential but it moves

in  a  periodic  potential.  So  in  that  case  we  have  learnt  right  now  that  electron

undergoes Bragg reflection and it undergoes Bragg reflection at the point pi by a and

minus pi by a.

So if we draw the energy versus k diagram, so still it is a parabola between minus pi

by a and pi by a and the second parabola starts here at the point B. But in the region

between a to b there is no solution of the Schrodinger equations.

So the figure number b here plot of energy versus wave vector for an electron in a

monoatomic linear lattice of lattice constant a the energy gap E g shown is associated

with the first Bragg reflection at k is equal to plus minus a. Other gaps are found at

higher energy as plus minus n pi by a for integer values of n.
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 The wave function are not the traveling waves of free electrons  in a nearly free

electron theory. At this special  values of k the wave function are made up of two

standing waves. From the traveling waves, e i n pi x by a where n is equal to 1 here.

So that is e pi x by a and e minus i pi x by a we can form two different standing

waves.

So what we mean here, if we go back to the previous slide, so at this point pi by a and

minus pi by a we have two different traveling waves. One is e to the power i pi x by a

which is moving in the forward direction and another is e to the power minus i pi x by

a moving in the backward directions. So two possibilities can be formed. Either they

can summed up or we can differentiate this.

Any linear combinations of the two function according to the quantum mechanics can

also be solutions of the function. So there can be two different standing waves here.

One let us write down as i plus, which is e to the power i pi x by a plus e to the power

minus i pi x by a. And if we expand this e to the power i pi x by a you know that e to

the power i pi by x you can write it as cos pi x by a plus i sin pi x by a.

Now  similarly you can write down e to the power minus i pi x by a. It will be cosine

pi x by a minus i sin pi x by a. Now if I add these two terms, so sin terms cancels out

leaving you two cosine pi x by a. Similarly I can form another combinations of these

two traveling waves by putting psi as psi minus that is e to the power i pi x by a minus

e to the power minus i pi x by a.



 In that case instead of plus sign between the two wave function I have to put a minus

sign and their cosines will cancel giving you 2i sin pi x by a.  So the two standing

waves psi  plus and psi minus they pile  up the electrons  at  different  regions.  And

therefore,  the two waves have different values of the potential  energy. Remember,

whenever we solved the Schrodinger equation, we solve it for energy eigenvalues and

wave function.

Since we have two wave functions here, there will be two values of the energies here

in the field of the ion of the lattice. This is the origin of band gap. If we plot these

things, this figure will be coming next and that will be more clearer.

(Refer Slide Time: 22:49)

The charge density is not constant for linear combination of the plane waves. The

probability density for the two standing waves will  be for the case of the positive

waves, let us consider is rho plus that is psi plus square is cos square pi x and rho

minus this is psi minus square, this will be sin square pi x.  The potential energy of

rho plus is lower than that of the traveling wave.

The potential energy of the rho plus is lower than that for the traveling wave. Whereas

the potential energy of rho minus is higher than that of the traveling wave. So we have

an energy band gap of width E if the energies of rho plus and rho minus differ by Eg.

Just below the energy gap, the wave function is psi plus and just above the energy gap

the wave function is psi minus.



(Refer Slide Time: 23:36)

So here is our potential energy. You look that this is the ion cores. These are the ion

cores  the  black  small  dots  and  the  distance  between  these  two  sites,  that  is  the

periodicity, crystal periodicity that is a. Now if we plot the probability density rho

which is the square of the wave function psi square and we have plotted that for psi

minus square and psi plus square.

So and for a comparison this traveling wave is showing by this straight line. So you

see that near that ionic sites psi minus here has a value and which is lower than the

traveling value.  And at the near the ionic core sites psi  plus has a value which is

higher than the traveling sites. Just above the energy gap the wave function is psi plus

and just above the energy gap the wave function is psi minus.

So  that  is  what  we  have  plotted  here.  How  that  standing  wave  distribute  the

probability density of the standing wave distributes here.
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Based on this models or assumptions in between the time period of 1928 and 1931

there are three scientist  namely Bloch,  Willson,  and Peierls  extended this  concept

from the lattice to the whole three dimensional solid and invent the so called band

theory. They gave convincing explanations of metallic insulating and semi conducting

behavior of solids.

That means the physical origin of the band gap they were able to successfully explain

based on their model. A solid is made of enormous number of closely packed atoms.

When these atoms are isolated, they have discrete set of energies as 1s, 2s, 3s, 3p and

so on. Like you know if you consider silicon, it has 14 electrons and we know we can

put these electrons in different atomic levels.

To form a  solid  many  isolated  atoms  are  brought  together.  Then  a  continuously

increasing  interactions  occurs  between  them,  so  that  the  split  energy  levels  form

essentially continuous band of energy.
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Let us look at it. When n is equal to 2 we have this two energy bands. When n is equal

to 3 I have 3. When n is equal to 4, there are 4 energy band; n is equal to 6 there are 6

energy band. If I increase to n is equal to 13 there are 13 energy band. But for an n is

equal to infinity so there are all the discrete energy bands but when you look from

outside it looks like a continuous energy bands.

This can be an example or analogy can be given to that when we fly in an aeroplane

when you are little bit high above we can distinctly see all the different buildings, but

when we go high above, then we do not see the different building separately rather we

see a stretch of the building. So that is although in the stretch all the different building

exist but what it looks like, like a stretch.

Similarly  here  the  energy  band  gaps  looks  like  a  continuous  although  there  are

different discrete energy levels lies inside them.
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Now  the  energy  bands  in  solids  corresponds  to  the  energy  levels  in  atoms.

Corresponding  to  every  energy  band,  there  are  the  energy  levels  in  the  atoms.

Generally lower levels are splitted less than the higher level.  So almost unsplitted

because these levels  content  mostly inner electrons,  which are not affected by the

nearest atoms.

So the electrons which are near to the nucleus, they are very tightly bound. So those

electrons  are  not  affected  by  the  neighboring  atoms.  An  electron  can  have  only

energies that can fall within these energy bands. The energy bands in a solid maybe

overlap or do not overlap depending on the structure of solid. If they do not overlap,

then the interval between them represents energies, which the electrons in the solid

cannot have. These intervals are called forbidden energy gap or the band gap.
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Here we are showing that things. We are considering two closely packed states. We

are  considering  to  2s  orbitals  and  2p  orbitals  where  these  two  orbitals  has  been

splitted and you see that in one of them forms an energy band and another of them

forms energy band where there is a separation between them two.

Later on we will learn that one of them at T = 0 K is completely filled whereas other

of them is completely empty. One of them we will call them as a valence band and

other we will call as a conduction band.

(Refer Slide Time: 27:54)

Let  us  try  to  understand  this  phenomena  for  a  real  practical  example.  Silicon,  a

semiconductor which is very commonly used to making for making solar cells. Let us

understand it by imaginary formation of a silicon crystal from isolated silicon atoms.



So here we are considering a case, you have so many different silicon atoms and you

have been given this silicon atoms.

Your job is to put the silicon atoms and make a silicon pistol. How can you do that?

Each isolated silicon atoms we know they have 14 electron and where are these 14

electrons stay? They are in different energy orbitals and that we can write as 1s 2, 2s

2, 2p 6, 3s 2, 3p 2. If you add all these electron numbers, 2 + 2 is 4, 6, 10, 12 plus 2

14.

So 14 electrons in one single atoms and they have occupied the different energy level

like  this.  And  that  is  the  electronic  configuration  of  a  silicon  atoms.  So  in  the

outermost orbitals, there are 2 + 2 4 electron is there. So each atom has available two

1s states two 2s states, six 2p states, three 2s states and two 3p states. Now if you

consider the N atoms, then there will be 2N 1s states, 2N 2s states, 6N 2s states and

6N 3s states respectively.

As the interatomic spacing decrease 3s-3p level merges to form a energy band. This

band contains 8N available levels. So again, look at this thing very closely. For one

atom in the outer orbitals, I have N is equal to 3. So how many electrons are there, 2+

2, 4 electrons. How many states is possible. There can be two 3s states and two 3p

states, right?

If there are N electrons are there so then there can be responsible, there can be two

three states and two TB states right. If there are electrons out there, so then there can

2N and 6N states. 2N state for the s states and 6N states for the p states because p

orbital can be sub divided into px, py, pz. So there can be 6N states possible. Now if I

have one atom that is the case. If I have N atoms this is the case.

Now if the N is very large, so all the distance between the successive energy level will

decrease.  So the distance between the 3s-3p level will also decrease and they will

march eventually and form an energy band which will ultimately contains 2N + 6N

that is the 8N available states. So this band further splits into two bands separated by

an energy gap E g.



So when we increase the number of silicon atoms in a crystal let us say 10 to the

power 23 silicon atoms in a crystal, so the distance between the successive energy

level decrease. Consequently, the distance between 3s and 3p level will also decrease

and finally they will merge to form a one energy band gap where everythings have the

same energy. You can consider this as a mixture of 8N states where they separate at

the same energy. And this band splits into two bands separated by a energy band gap

E g.

(Refer Slide Time: 31:06)

The upper band conduction band they contain the 4N electrons as does the lower

valence band. So there are 8N electrons. So the lower band contains 4N electrons and

the upper band contains 4N electrons and they are separated by some energy band

gap. So in the silicon crystal, there are two bands of available energy.

They are separated by a distance E g which contains no allowed energy levels for

electrons  to  occupy. So again,  if  this  is  the  silicon  nucleus  and  this  is  the  outer

orbitals, so in outer orbitals now we are considering 8N electrons where there are 3s

orbitals and 3p orbitals. Now when n is large in a crystals, so we have learned that the

3s-3p orbital merge and they form 8N electronic states.

Now this  8  electronic  states  they  split  into  two  different  states,  the  lower  states

contains 4N electrons and the upper states contain 4N electron. So the lower states

contains 4N electrons and the upper states contain 4N electrons. In between them,

there is a separation and that separation is called forbidden energy gap or energy band



gap and we call it as E subscript g that is the expression for the band gap. This gap is

called forbidden energy gap.

(Refer Slide Time: 32:24)

We can look this in a in a silicon real silicon crystal and if we plot the relative energy

of the electrons along the y axis and along the x axis is here the electronic distance so

you can see that how this 6N states and the 4N states has been distributed here. So the

4N states which contains 4N electrons here and 6N states now contains 2N electrons

and they are separated by a band gap E g. And along the x axis, we have the relative

spacing of the atom.

(Refer Slide Time: 32:56)

So again, y axis is the relative energy, x axis is your relative spacing of the atoms. So

you can see that there are two energy states. You have 3s states and 3p states. So 3s



states which contains 2N states of 2N electrons; this is 2N state of 2N  electrons, right.

So  this  now split  into  two  different  states.  One is  4N states,  which  contains  4N

electrons and this is also 4N states, but it does not contain any electrons here.

And there is a separation between these two and that separation you call it as a band

gap, This energy allowed energy band is called the valence band and this allowed

energy band gap is called the conduction band gap.

(Refer Slide Time: 33:38)

Based on this concept, we can classify the solids or materials into three distinct class,

conductor, insulator, and in between conductor and insulator semiconductor based on

that band gap. So what is a conductor? A conducting materials are those in which

plenty of free electrons are available for electronic conduction. In terms of energy

bands, it means that the electric conductors are those which have overlapping valence

and conduction bands.

So in a conductor or in a metal,  valence band and conduction bands overlap each

other  and  Fermi  level  lies  since  Fermi  level  lies  in  between  valence  band  and

conduction band.  So in  the case of the conductor, Fermi level  can lie  in between

valence band or in conduction band since valence band and conduction band overlaps.

So the probability of staying Fermi energy is equal in both of these case.

What is a semiconductor? These are characterized by a very narrow energy gap one

electron volt between the valence band and conduction band. These are solids whose



electrical  conductivity  lies  between  high  conductivity  of  conductors  and  low

conductivity  of  insulators.  For  example,  silicon  germanium,  gallium  arsenide.  So

semiconductors  are  materials  whose  conductivity  is  in  between  conductor  and

insulator.

So usually the energy band gap is one electron volt to 1.5 electron volt. There are

several example of semiconductor and as you have learned that semiconductors are

heart  of  the  optoelectronic  industry. Band gap in  germanium and silicon,  gallium

arsenide are 0.7 ev, 1.1 ev, and 1.43 ev. So in germanium the band gap is 0.7 ev, in

silicon it is 1.1 ev and in gallium arsenide it is 1.43 ev.  It is important to remember

this number because we will refer to these numbers very often later on.
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And the third part in our classification of materials is the insulator. Insulators are solid

having a wide energy gap. Let us say 6 ev or 10 ev between a filled valence band and

an empty conduction band and they are insulator because valence band cannot jump

or they cannot acquire the required energy from the applied field to move across the

band  gap  and  reach  to  the  conduction  band  for  available  of  the  electrons  for

conductions.

Once the electron jumps from the valence band to conduction bands, so then only

electrons will be available for conductions. But in the case of insulator the band gap is

such large that this electron cannot jump from the valence band to the conduction



band at the room temperature from the applied energy or even if you put some applied

energy so that there is almost no electron at the conduction band.

And since the conduction band electron participate in the electricity, so you do not see

any electrical conduction in insulator. There are various example of insulator, right?

One common example is wood, rock. They are all example of this insulator. So if we

draw the energy band diagram for these three different materials, this looks like this.
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Let us say our y axis is the energy of the electron, okay and x axis I am plotting the

atomic spacing. So in the case of the insulator, I have this is my valence band and this

is my conduction band, right. So the distance between these two that is a band gap E

g. So in the case of insulator energy band gap is very large 6 ev or even 10 ev. And the

electron has not have sufficient energy to cross this barrier from going from valence

band to conduction band.

So that there is no electron available in the conduction band for conduction of the

electricity.  Now  consider  the  other  extreme,  that  is  conductor.  Here  you  see  the

valence band and the conduction band they almost overlaps with each other. So Fermi

levels that can lies in between. So there is almost overlaps between valence band and

conduction band.

And at room temperature even there are almost enough amount of electrons which can

go to the conduction band and that is why available for conducting the electricity.



That is why metal is a very good conductor of electricity. And in between these two

extremes insulator and conductor, we have semiconductor whose conductivity is not

as  high as  conductor  but  better  than insulator. So here there  is  a  finite  band gap

between the valence band and conduction band, usually from 1 to 1.5 electron volt or

in organic semiconductor even it can goes to 2 to 2.5 electron volt.

But if we provide enough amount of energies this electron can cross this band gap and

goes from valence band to the conduction band. Once it reaches to the conduction

band the electron is available  for conduction of the electricity. So that is why the

semiconductor  materials  although  in  an  intrinsic  condition,  it  has  a  very  low

conductivity.

When you apply some external bias then it is a very good conductor of electricity.

And its conductivity lies between a good conductor and an insulator. Let us compare

some of the common properties of a conductor insulator and semiconductor.
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First  thing  is  the  electrical  conductivity.  As  I  said  that  for  a  case  of  conductor

electrical conductivity is very high. But when I say very high, how high it is, it is

almost like 10 to the power -7 mho/m. It is the SI unit of conductivity. In case of the

insulator the electrical conductivity is negligible, 10 to the power -13 mho/m or in

case of semiconductor, this is in between conductor and insulator.



So between those of conductor and insulator and if the value is 10 to the power of -7

mho/m to 10 to the power -13 mho/m. So what will be the resistivity? Since resistivity

is reciprocal of conductivity, in the case of conductor, I have a very large value of

conductivity. So the resistivity should be very low. So here the resistivity is negligible

less than 10 to the power -5 ohm centimeter.

And in the case of insulator the resistivity will be very high because conductivity is

low. So it is very high, more than 10 to the power 5 ohm meter. And in the case of

semiconductor it is measured between the conductor and insulator. So it is between

those of conductors and insulator that is 10 to the power -5 ohm meter to 10 to the

power +5 ohm meter.

And there are instruments which can measures this conductivity or resistivity. What

about the band structure? In the case of conductor as you have seen that the valence

band which is completely filled and conduction band usually which is completely

empty. But in the case of conductor valence band and conduction band they overlaps.

So their delta E g the band gap is essentially zero and Fermi level overlaps between

these two.

In  the  case  of  insulator,  the  band  gap  is  maximum  between  valence  band  and

conduction band. In the case of semiconductor this is not as large as insulator but not

overlapping like as a case of conductor. It has some finite value as I say is 1 electron

volt to 2 electron volt depending upon the semiconductor.

And if we provide enough amount of energy electron can cross this level and go from

valence band to conduction band and once it reaches to the conduction band these

electrons  are  available  for  conducting  electricity.  What  about  energy  band  gap?

Obviously, as we just mentioned, in the case of conductor it is zero or very small.
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In the case of insulator it will be very large. A common example is diamond whose

band gap is 7 electron volt, delta E g is 7 electron volt for the case of diamond which

is a very common example of an insulator. In the case of semiconductor we have

learned it should be in between conductor and insulator. So more than in conductors

but less than insulators. As for example, germanium, the energy band gap is 0.72 eV.

Silicon 1.1 eV right. Gallium arsenide 1.3 eV. Current carriers and current flow that

happens in the case of conductor due to the free electrons because electrons are very

loosely bound and the conductivity and current flow is very high. In the insulator, the

current conduction happens due to the free electrons but there is no available free

electrons here. So it is almost negligible.

And in semiconductors, we see the both type of charge carrier, electrons and holes

right. We see both types of charge carriers and many often as we will see later on this

bound electron and hole pair is called exciton. So this bound electrons and hole pair

they  are  called  exciton.  So  once  the  electron  goes  from  the  valence  band  to

conduction band it leaves a vacancy in the valence band and that vacancy behaves as

a positive charge carrier.

And that vacancy is called a hole and electrons and hole together when they are bound

by some kind of  electromagnetic  force,  they  are  called  exciton.  And this  kind of

binding  energy  is  called  exciton  binding  energy. Number  6  is  number  of  current



carriers electrons or holes at ordinary temperature. At room temperature what is the

number of current carriers.

In conductor it is very high. In the case of insulator it is negligible. And in the case of

semiconductor  at  room  temperature  it  is  very  low.  That  means  for  an  intrinsic

semiconductor if I do not do any external doping, or if I do not provide any external

bias, so that the electron cannot cross normally the valence band to the conduction

band.

There are very few number of electrons are available in conduction bands for current

conductions and that is why the electrical conductivity is not very high, also it is not

zero, but has a very low value. So that is all we learn for today's class.
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And for references, you can look into the Solid State Physics book by Charles Kittel

and also by Streetman and in Banerjee’s book and Solid State Physics by S.O. Pillai.

And we also have learned that some of the problems which the free electron theory

cannot solve, the nearly free electron theory can solve those problems. Like nearly

free electron theory can able to explain why some solids are metal, why some solids

are conductor and why some of them are semiconductor.

In  considering  tight  binding  approximation  which  is  like  different  from  the  free

electron theory, but gives similar kind of results we can see that in a solid the atomic

energy level splits  and that gives rise to the energy band gaps. And there are two



different  types  of  band  gap  exist  one  is  called  valence  band  another  is  called

conduction band.

At room temperature usually the valence band is completely filled and conduction

band is completely empty and there is a gap between the valence band and conduction

band and that gap is called energy band gap. Now depending upon the value of the

energy band gap, we classify the materials as conductor, insulator or semiconductor.

In the case of conductor, the energy band gap is negligible.

So valence band and conduction band almost overlaps. In the case of insulator the

value of the valence band and the conduction band or the energy band gap is very

large. So that at room temperature there is almost no electrical conduction. Whereas in

the case of semiconductor, the distance or the separation between valence band and

conduction band is not overlapping as in the case of metal, but also not very large as

in the case of insulator.

 But it is in between metal and in between insulator, something like 1 to 2 electron

volt.  So  the  electrical  conductivity  at  room  temperature  is  negligible,  but  if  we

provide some external perturbation or external energy in terms of doping or electrical

current  or  something,  there  can  be  a  measurable  or  some  detectable  amount  of

electricity happens in this materials or semiconductors.

And some common example of semiconductors are germanium, silicon, and gallium

arsenide. So this theory nearly free electron theory able to explain very easily why

some  solids  are  metals,  why  some  solids  are  insulators  or  why  some  solids  are

semiconductors and in our device physics or in our solar cell photovoltaics devices we

will use the semiconductor namely silicon for making our solar cells. Thank you.

 


