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Welcome  everyone.  In  today's  lecture  we  will  discuss  about  the  importance  of

quantum mechanics  in photovoltaics.  In  last  two lecture  we have discussed about

different source of energy. For example, we have talked about conventional source of

energies  like  coal,  natural  gas  and  oil.  And  we  have  also  discussed  about  non-

conventional source of energy like wind energy, tidal energy, geothermal energy and

solar energy.

We also said that, based on their resources, these kind of energy can be classified into

renewable  and  non-renewable  energy.  And  finally,  we  discussed  about  the  solar

energy and we said that out of the different forms of renewable energy, solar energy is

a clean and green source of energy and it is very popular. Now in this course, we are

going to study about the solar cells in details.

To understand the  solar  cell  it  is  very  important  to  have  a  preliminary  and basic

concept of the quantum mechanics. In this course we are not going to learn in details

about  the  quantum  mechanics.  But  we  will  learn  that  much  amount  of  quantum

mechanics which is needed to understand the working principle of a solar cell.
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So for  getting  a  complete  insight  of the photovoltaic  solar  cell,  it  is  important  to

understand the basic concept of quantum physics. The behavior of matter and energy

is  different  at  subatomic  scale  than the macroscale.  So quantum theory is  usually

essential  to  understand  the  behavior  at  the  subatomic  scale.  And  the  principle  of

quantum mechanics that can be applied for developing better PV cells with higher

efficiencies and molecules.

So what do we mean by that? Let us give an example. Okay, let us consider this chalk.

This is a bulk material. Now if I throw this chalk with some kind of force, let us say

10 Newton, so we know that this chalk will go and then it will hit somebody. If I

know its  initial  velocity, and since  we know its  final  velocity  is  zero  so we can

calculate how much distance it will move. Okay?

Or if we know its final velocity, if we know its distance, then we can find out its

initial velocity. If I make this chalk half, let us say I crack it into two piece and if I

throw each of this piece with 10 Newton force I can again calculate by using the

Newton's law. But let us imagine a situation I keep on doing this cutting this chalk and

comes to a dimension which is something like 10 to the power -9 meter or which is

like 10 to the power -10 meter.

In that scale, when the chalk is there, we call it for example, nano chalk. The question

is whether we can apply the similar amount of 10 Newton force to this nano chalk or

even if we apply, whether we will be able to calculate the distance it will cover. So



this  is a big question.  The question is not about whether Newton's law is right or

wrong at the sub atomic scale, but the question is, it is the scale which prohibits the

use of the Newton's law at such a small scale.

When you talk about electron or proton or neutron or any other subatomic particle, we

cannot directly use Newton's law of motions. To find out the kinetics of any particle

or any subatomic particle, we simply cannot directly use Newton's law. It does not

means that Newton law is wrong, but it is the smallness of the scale, which prohibits

us to use this Newton's law in that scale.

So how we describe the kinematics or motion of this particle? We all know that flow

of the electron is the current and in a photovoltaic solar cells, we basically are going

to study about this current and voltage. Now this current is coming due to the flow of

electron. Now to understand this flow of electron, we really need to understand what

kind of force is acting on them and if a certain kind of force is working on them, what

will be their trajectory, what will be their motion.

We cannot explain this in terms of the classical physics or classical  mechanics.  A

completely new kind of mechanics, or completely a new kind of physics is necessary

to explain this. And that is what the quantum mechanics. And the quantum mechanics

evolution has happened over a quite a long amount of time. J.J. Thompson first give

the concept of the electron.

Later on Rutherford from his famous alpha particle scattering experiment has said that

most of the space in the atom is free and there is a massive positively charged nucleus

at the center of the atom and electrons which are negatively charged particle they orbit

around that nucleus. Now from the classical Maxwell theory of the electromagnetism,

which was there in the place for quite a long time.

So this  Maxwell's  theory  of  electromagnetism they say  that  any radiating  or  any

accelerating electric charge they radiate. Now if the electron moves in a circular orbit,

let us say like this is the electron and it moves in this circular orbit. So at each and

every moment, its direction is going to be changed. So that means it is accelerating.



So if the electron accelerates like this way, very soon it will lose its energy and falls

on the nucleus.

For example, if we consider this is the atomic structure, I have my nucleus which is at

the  center,  this  is  the  nucleus  and  electron  is  orbiting  around  this  nucleus.  So

according to the Maxwell's theory of electromagnetism, very soon electrons will make

a serpentine path and will fall on the nucleus. So there will be no atomic stability. But

in the contrast we all know that atoms are stable and all the solid exist.

The second part from this Rutherford experiment, which was not able to explain in the

classical  physics  is  the  origin  of  line  spectrum  in  the  electromagnetic  spectrum.

According to the Rutherford theory, we should get a band like spectrum, whereas the

spectroscopic  has  seen  a  line  spectrum  in  most  of  the  materials.  Both  of  these

anomalies were not able to explain by the Rutherford’s theory.

And it was understood that a complete new kind of theory is required to explain this

phenomena. By the time Einstein explained his photoelectric effect. So what he says

that  extending  the  Planck’s  black  body  radiation  that  when  any  hot  body  emits

radiation it not only emits the energy as a bundle of energy, but it also absorbs the

energy in bundle of energy.

So that means if it emits the energy in bundle of energy and if it absorbs the energy in

bundle of energy, when the energy is in the space there also it exist as a bundle of

energy. So this bundle of energy he gave a name called photon. So the quantum of this

energy he gave a name called photon and he described the light as a photon or as a

particle.

Phenomena like photoelectric  effect  like Compton effect  can be explained by this

photon picture or particle picture of the light wave. At the same time Niels Bohr came

and he was trying to improve upon the existing Rutherford’s theory. Combining the

concept of the Einstein and the blackbody radiation theory of the Planck, Bohr has

extended the idea of the Rutherford Planck’s model.



And what he said that electron cannot move arbitrarily in any of the orbits like this,

but it can rotate only in those orbits where its energy is fixed. So if I fix its energy so

then electron in a particular orbital has a fixed quantum of energy and this explains

most of the dilemma or most of the anomaly existing in that times and that was the

origin of quantum theory.

Now so  far  we  have  considered  the  light  either  as  a  wave  or  as  a  particle.  For

example,  when  we  want  to  explain  phenomena  like  polarization  or  deflection  or

scattering, we consider the light as a wave. We take an example for interference or

diffraction we consider light as a wave. But when we talk about photoelectric effect,

we talk about Compton effect, we consider light as a particle.

So that means, light can exist as a wave and it can also exist as a particle. So it has a

dual nature. Now we are already discussing about the electrons motion in the atom by

then. So the normal question which arise in the people's mind if the light can exist as a

wave as well as a particle, can particle also exist as a wave and that was comes the

famous de Broglie equations.

De Broglie in his PhD thesis first proposed that any particle like electron can also

exist like a wave.

(Refer Slide Time: 10:27)

And he explained the things if this is an atomic orbital and if this is a electron, so this

atomic particle electron they can exist like a wave and how does this wave will be



distributed  here?  So  this  will  be  distributed  like  this.  So  here  is  the  one  very

interesting point.  When we talk about the electron as a particle,  we talk about  its

charge, we talk about its mass.

And if we know what is its charge and what is its mass and if we know the centrifugal

force, we can find out the location. But the moment we go to describe the electron as

a  wave,  then  we have  distributed  it  over  a  dimension  rather  than  restricting  it  at

particular positions. Now if I ask you the questions at time t = 10 sec, where is this

electron? So the probability of electron being here and here are same.

You can say that electron is here, somebody can say the electron is here. So the point

is that we cannot definitely say that electron is either here or here. What makes more

sense instead of telling if electron is here or here, the probability of getting electron

between this  point  and between that  point  is  maximum or  probability  of  electron

between this point and that point is maximum.

If this point is represented by time t and if this point is presented by time t + dt so in a

time interval between t to t + dt the probability of finding the electron between this

point and this point is maximum. So now we are talking about in terms of probability.

So quantum mechanics talks in the language of the statistical mechanics. Here we talk

everything in terms of the probability.

And  when  we  represent  the  electron  as  a  wave  so  obviously,  there  will  be  a

wavelength associated with this electron and de Broglie called that wavelength as a

lambda, because if there is a wave there will be a wavelength. But this is the wave

properties of the electron. Now electron has a mass m. It has a velocity v. So that

means it has a momentum which is m times v.

This momentum is the particle properties of the electron, whereas this wavelength is

the  wave  like  properties  of  the  electron.  How  one  can  correlate  this  wave  like

properties with this particle like properties. That is what the de Broglie did. So what

he said that the wavelength of the electron lambda is equal to the Planck’s constant h

divided by the momentum P.



And this  wavelength we call  as de Broglie  wavelength.  And h here is  the Planck

constant. Corresponding to every subatomic particle, whether it is a electron, whether

it is a proton, or whether it is a neutron, we can find out the corresponding de Broglie

wavelength if we know the charge and mass of that particle. So what we are telling

here the electron which is a particle can also exist as a wave.

And this kind of wave is called matter wave. In quantum mechanics, the state of any

particle is represented by a wave function. And a wave function is usually written by

the  symbol  called  psi.  Now psi  is  a  quantity  which  represents  the  probability  of

finding the particle somewhere in the space. Another important point here is that in

classical Newtonian mechanics, we mainly deal with the Euclidean geometry.

But in quantum mechanics, we consider the complex space. In quantum mechanics,

the probability density makes more logical sense, than the only wave function.  So

since  psi  is  a  complex  quantity, I  can  find  the  positive  quantity  that  the  position

probability density by multiplying the psi with its complex conjugate. Let us take an

example.
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Let us take an arbitrary complex number, a + ib. What will be the complex conjugate

of this quantity, a – ib. If I multiply z with z star, I will get mod of z square and that is

equal to (a + ib) (a – ib). You get a square plus b square. And this is the really useful

physically measurable quantity. Similarly, if your wave function is psi, if I multiply it



with complex conjugate, which is called psi star, then you get mod psi square which is

called position probability density.

 And this position probability density is physically more significant than the wave

function. And wave function is always a function of the positions and times. So these

are the some fundamental postulates of quantum mechanics, which is important to

learn in the beginning before we go to  the kinematics  equation which govern the

quantum mechanics.

In quantum mechanics, the state of a particle is represented by the wave function psi.

And the probability of any particle or finding of any particle is represented by the

probability  density and probability  density is physically  more meaningful  than the

only probability. Okay, let us comes back to our photovoltaic systems.

(Refer Slide Time: 16:48)

Most of the time the solar spectrum comes like the spectrum or rainbow. Now on the

left  hand side,  I  have red photon.  Red photon is  larger  wavelength  photon.  That

means they have low energy. And the right hand side we have blue photon and blue

photon is have a lower wavelength. That means they have higher energy. For time

being consider this is my solar cell and photon beams falls on the solar cells.

So what will happen? There will be an electron which will absorbs this photon beam

and it will go from the ground state to the excited state and the electrons will start

moving from here and the whole will move in the opposite directions. If we connect a



load in the outside circuit  we will get a current in the outside circuit.  Now if this

energy is Eg the band gap, which corresponds to Eg at the spectrum.

Now this part of the spectrum which is red photon that does not contribute to the

absorptions. So that get lost. Similarly, the blue photon, they have a slightly higher

energy than the band gap energy. So this part is the excess than the band gap energy.

So that excess energy will get lost by the heat energy to the piston. So the only useful

energy is 30 to 35%, which we can harness from the spectrum.

But our goal is to make a highly efficient solar cell. Let us say for example 65% solar

cell, how can I do that things? Either we need to use the whole spectrum or we can do

it by intelligently designing new materials or new interfacial layers on our electrodes

so that the band gap can be tuned properly. To do this thing, we need to understand

also the quantum mechanics very well.

So that  is  why a basic  idea  of  quantum mechanics  is  very necessary. In  classical

physics, Newton's law describes the kinematics of a particle.
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If  I  apply a  force f,  if  I  know the mass  of  the particle  m,  so we can write  from

Newton's second law, force is equal to mass times accelerations. We can find out what

is accelerations. So in classical mechanics, the position of a particle can be described

as a function of force. But quantum mechanics, we just gave an example of a nano



chalk,  when you were talking about  the electron  proton, how can we find out  its

positions?

What equation govern the time evolutions of this wave function? So that was given by

Schrodinger equation.  Schrodinger equation is actually a mathematical formulation

for  studying  quantum mechanical  system.  It  describes  the  change  over  time  of  a

physical  system  in  which  quantum  effects  such  as  wave  particle  duality  are

significant.

When you discussed about this de Broglie hypothesis we said that the electron can

also exist as a wave. So that means electron can exist as a particle, it can also exist as

a wave. So it shows a dual nature and that phenomena is called wave particle duality

and that is purely quantum in nature. Schrodinger who formulated these equations, he

discovered this in 1925 and published his work in 1926.

And because of his outstanding work, he was given Nobel Prize in Physics in 1933.

There are different formulations of quantum mechanics like Schrodinger formulation.

Similarly, there is a matrix formulations of the quantum mechanics and also there are

path integral formulations of quantum mechanics. Paul Dirac, he has combined this

Schrodinger formulation and matrix formulations.

Here we are not going in details about the all different formulations. We will learn

about the Schrodinger equations and how we can use this Schrodinger equation to

understand the dynamics of a system. The Schrodinger equation in one dimension is

written like this; i which is an imaginary number times the reduced Planck’s constant

which is called as h bar.

If h is my Planck’s constant h by 2 pi that is called the reduced Planck's constant h

bar; i h bar partial derivative of psi with respect to time is equal to minus h bar square

by 2m plus double partial derivative of psi with respect to position plus B psi.
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So what we just written that i h bar del psi del t is equal to minus h bar square by 2m

del 2 psi del x 2 plus v psi. Here psi  is my wave function which is a function of

position and time. And h bar is the reduced Planck's constant. And v the potential

energy, v is the potential energy. Now you look at this equation, the right hand side,

we have minus h bar square by 2m del to del x 2 psi plus v psi.

So we can also write the right hand side  by minus h bar square by 2m double partial

derivative with respect to x plus v if we consider the v as an operator time psi. In

quantum  mechanics,  every  physically  measurable  quantity  is  represented  by  an

operator. Let us say I want to measure the length of this chalk.

In classical mechanics or in classical physics what I should do, I will take a normal

scale I will put the one end of the scaling in one side and then I will put another side

in here and I will measure what is the length either in inch or in centimeter. But in

quantum mechanics, we cannot measure the positions of this chalk like this way. We

cannot use a scale there for the case of the electrons or protons.

So if I want to measure the positions of a this nano chalk let us consider this chalk is

no longer a bulk chalk but a nano chalk and I want to measure the length of this chalk.

And let  us say the length of this  chalk is  x okay, this  x.  Now this  x in quantum

mechanics  is represented by putting a hat or cap sign on top of this  x and this is

written as this is spelled as x hat or x cap and this is called operator.



Corresponding  to  every  dynamical  variables  there  is  an  operator  in  quantum

mechanics. Like momentum they have a operator called momentum operator. Energy

has an operator that is called energy operator. And when this operator operates on

wave function I get the result of measurement. The result of measurement in quantum

mechanics is called expectation value.

And another weird fact associated with quantum mechanics is that it says that every

time we do a measurement the systems falls in a completely different system. So next

time when we do measurement, we are not measuring on the same system. Third time

when we are doing measurement,  we are not measuring on the same systems. So

every time we are not measuring at the same system.

So finally after doing n successive measurement, what we get is an ensemble average

of  all  successive  measurements.  And  we  call  that  measurements  value  as  an

expectation value. And the expectation value of this length x that is represented by a

symbol like this. And mathematically this expectation value is calculated by putting

the operator on the wave function.

And to make it more physically meaningful we learnt that to multiply it by complex

conjugate and integrating over the space on which the electron is confined times the

integrate.  So  this  bracketed  part  here  that  corresponds  to  a  operator  in  quantum

mechanics and this operator is called the Hamiltonian operator H. The first part here

corresponds to the kinetic energy and the second part here corresponds to the potential

energy.

So sometimes if you replace this whole part under this bracket by this letter h so then

this becomes h times psi.
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So basically what we have written is that i h bar del psi del t is equal to h psi. That is

the  one  dimensional  Schrodinger  equations.  Now  this  equation  depend  on  the

positions as well as the time. So this is an example of a coupled equation. We need to

decouple them for practical application.

So that means, we need to make these equations in such a way, one part will contain

the time part, another part will contain only the spatial part. And this is done by a

method called method of separation of variables. We also mentioned it here.
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You can see that the potential energy is also a function of the positions and the time

and the method we are going to use to decouple this equation is called method of

separation of variables. So in this method, we write this wave function psi which is a



function of positions and time as an independent product of two function where the

first function depend only on positions and the second function depends only on time.

Now  we  are  exposed  to  little  bit  of  differential  calculus  and  integral  calculus.

Assuming  that  fact,  let  us  do  a  partial  differentiation  of  this  psi  with  respect  to

positions and with respect to time. Let us do the time part first. So if I do a derivative

of this wave function with respect to time what I will get? I will get del psi del t is

equal to phi x df dt because now it is a not a partial integral, it is a full integral.

If I substitute this in my Hamiltonian equation, if I substitute this in my Schrodinger

equations, what I will get? So that is the time part.
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And the second part of the equation was the spatial part. Now I have to deal with the

spatial part. So if I differentiate the spatial part two times, then I will get if I do it one

time I will get del psi del x is equal to d phi dx ft and if I do it another time I will get

del 2 psi del x 2 is equal to d 2 phi dx 2 ft.  Let us substitute this, the spatial derivative

part and this time derivative part in the original Schrodinger equations. So what we

will get here is the following.
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The first part was ih bar del psi del t is equal to minus h bar square by 2m del 2 psi del

x 2 plus v psi, right. So if we plug in from the previous derivative what we will get

that ih bar phi df dt is equal to minus h bar square by 2m del 2 psi del x 2 we have

done it last time that is d 2 phi d x 2 ft. If we substitute this so we will get d 2 phi d x

2 ft plus v is the potential energy into the wave function psi which is the product of

phi and f.

Now if we divide the both side by phi times f. You divide the left hand side and right

hand side by phi times f. What you will get here on the left hand side? You will get ih

bar 1 over f df dt and right hand side what you will get? Minus h bar square over 2m 1

over phi d 2 phi dx 2 plus v.
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That exactly we are showing here. Differentiating psi x, t with respect to time and

position, we get del psi del t which is phi into df dt and differentiating with respect to

x we get del 2 psi del x 2 is equal to f d 2 phi dx 2.
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Now if we substitute this in the Schrodinger equation and subsequently divide by the

phi  into  f,  we  get  a  equation  which  looks  like  that.  Now  you  look  there  is  an

interesting fact. The left hand side here is a function of the time only. And the right

hand side here is a function of positions only. This side is a function of time, this side

is a function of the positions.

So I have an equation where f 1 is a function of time is equal to f 2 is a function of x.

How that can be true simultaneously? If both of them is equal to a positive constant a,

and let us consider that constant is the energy E. So if we consider that constant is

energy E, so I can equate the left hand side ih bar 1 over f df dt is equal to E.
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And if we integrate this equation, ih  bar 1 over f df dt is equal to E, what we will get;

iH bar df by f is equal to E dt. If we multiply that we can also write df by f 1 over ih

bar E dt, if the iH bar comes on the right hand side, right. So 1 over i is we can

multiply top and bottom by i. So this is i and this will be i square and i square is -1. So

that means we will get –i by H bar E dt. So if we integrate the previous equations this

df by f, also this right hand side so what we will get?
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We will get f is equal to f 0 e to the power minus iEt by h bar. This is the solutions of

the time dependent part of the Schrodinger equations. So this is the solution for the

time dependent part of the Schrodinger equation; f is equal to f 0 e to the power –iEt

by h bar.
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We are left out with the spatial part. What was our spatial part? Our spatial part was

this. Minus h bar square by 2m d 2 phi dx 2 V phi is equal to E phi where V is the

potential and this is called time independent Schrodinger equation. As you can see,

the d 2 phi dx 2, here phi is now a function of the positions only as we have defined it

earlier. And phi is also a positions, function of positions.

So everything here is a function of positions. No time here. So that is why it is a time

independent  Schrodinger  equation.  So  starting  with  time  dependent  Schrodinger

equation we have now derived a time independent Schrodinger equations. And once

we come across this point, rest of the quantum mechanics is solving this equation for

different value of the potential.

When you are talking about the electron in a metal or electron in a semiconductor,

basically  we are  going to  solve  this  equation  subjected  to  the  different  boundary

conditions.  We first  start  with  the  typical  example.  Electron  in  a  metal.  This  is

sometime represented as particle in a box problem or a particle in an infinite potential

wall.
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Let a single particle like gas molecule is confined in a one dimensional rectangular

particle box.
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So you consider, here this is your x axis. This is your y axis. The particle is confined

in a one dimensional rectangular potential box. So the potential energy between these

two end is zero. And at this two boundary potential is infinite. The length of this box

is L. This particle can move freely within the region between x 0 to L.

Inside  the  box  the  potential  energy  is  zero  but  at  the  wall  it  suddenly  goes

asymptomatically and becomes infinite. So if the mass of the particle is m and its total

energy is E then we can write the time independent Schrodinger equation d 2 psi dx 2

+ 2m/h bar square E - V psi = 0.
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So this is exactly the representation of the potential here. You can draw the diagram

here also. So this is your x axis, this is your y axis, this is your potential. The length or

the dimension of this potential box is L. So V x is equal to zero here. And V is equal

to finite  at  this  two boundary. We need to  solve this  Schrodinger  equation at  this

region and also at this region.

Here the potential described by this function. So I have written that d 2 psi dx 2 plus

2m by h bar square psi is equal to 0 and you consider this 2mE by h bar square as a

constant k square. If you replace this as a constant k square the equation will be d 2

psi dx 2 plus k square psi is equal to 0.
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And the solutions of these equations will be Ae to the power ikx plus B e to the power

minus ikx. If we apply the proper boundary conditions, what we will get that
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The energy value is n square pi square h bar square by 2mL square and the wave

function is A sin n pi x by L. We will conclude this module with this and in the next

class  we will  see that  how this  application  of  the boundary condition  is  going to

influence our wave function as well as the energy level. Thank you.

 


