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In this lecture we will study the periodic refractive index modulation in the fiber core,

these periodic structures are called grating. So, we are going to study fiber gratings.
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So, what we have is in a fiber if we create periodic refractive index modulation, then

these kind of structures can be used as components or devices in telecommunication and

sensing systems. Depending upon the periodicity of this modulation we can have short

period gratings or long period gratings. Short period gratings are also referred to as fiber

Bragg  gratings,  because  the  phenomenon  is  equivalent  to  Bragg  reflection  or  Bragg

detraction in crystals. Typical refractive index modulation amplitude is 2 into 10 to the

power  minus  4  and  length  of  the  grating  is  few millimeters  it  can  be  a  couple  of

millimeters to 10 or 15 millimeter.
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So, let us understand how does it work first we will consider fiber Bragg gratings. So, we

have this refractive index modulation, we have low refractive index high refractive index

then low refractive index periodically, now when a light beam is incident here because of

this index contrast a part of the beam gets reflected from this interface, part of the beam

goes out and then it gets reflected from the rear interface. Similarly from all the other

layers there would be reflections. What happens is that when all these reflections are add

up are added up in phase then we can have a very strong reflection and this will happen

at a particular wavelength.

So, in order to understand this let us zoom this, and consider different waves here. So,

when this wave is incident here this is the incident wave, and we have the periodicity

lambda. So, for convince let us divide it into lambda by 2 for high refractive index region

and lambda by 2 low refractive index region. Let us say in high refractive index region

the refractive index is n 0 plus delta n 0 and in this region it is n 0 minus delta n 0.

Now when this wave is incident here a wave gets reflected from this interface, let us say

it is a part of the wave gets reflected from this interface let us say it is b then whatever

portion of the wave whatever fraction of the intensity goes out here that gets reflected

from other interfaces. If all these three are added up in phase if they have a phase shift of

2 pi or integral multiple of 2 pi, then we will have strong reflection.

Let us find out the condition for this strong reflection and wavelength at which this will

happen. So, if I consider these 2 waves a and b, then the phase difference between a and



b would be pi minus 2 pi over lambda not times n 0 plus delta n 0 times lambda, because

this is the path difference from here to here; so lambda by 2 and lambda by 2 in the

refractive index region of n 0 plus delta n 0. So, this is the part difference and this pi

phase shift occurs because there is a reflection from rarer to denser interphase media.

So, I have delta phi a and b the phase difference between these 2 waves, similarly I can

have delta phi b c the phase difference between these 2 waves, and if all the three waves

have to have constructive interference and let us say this happens at wavelength lambda

b, then if I take the total phase shift the phase shift between these and these there it

should be integral multiple of 2 pi and for m is equal to 1 if I take the value of that

integer as 1then it should be equal to 2 pi, and if I put the expressions from here the

lambda the value of lambda B will come out to be 2 n 0 times capital lambda.

Where I have assumed that delta n 0 is much much smaller than n 0, and which is the

case because n 0 is typically 1.5 and delta n 0 is about 2 into 10 to the power minus 4.

So, I can neglect n 0 with respect to sorry I can neglect delta n 0 with respect to n 0.
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I can also understand this interaction as coupling between 2 modes. If I have a fiber let

us say I have a single mode fiber. So, in a single mode fiber if I launch light from this

side the mode is excited and mode propagates in this direction. If this the this is ideal

fiber and there are no scattering centers, and if I have index matching liquid at this output

end then there is no way that the light will travel back because there is no back reflection



from here, there are no scattering centers. So, there is no mechanism by which the wave

can travel back.

So,  in  general  even  if  I  do  not  put  index  matching  liquid  here  and there  are  some

scattering centers, then the light which comes back is very small. So, most of the light

goes in forward propagating mode, this grating here acts as periodic refractive index

perturbation and this perturbation can couple light from forward propagating mode to

backward propagating mode. So, if I have forward propagating mode whose propagation

constant is beta plus, and backward propagating mode whose propagation constant beta

minus and of course, since it is single mode fiber. So, these modes are the same they

their propagation constants magnitude are the same only their directions are different. So,

this magnitude beta plus would be equal to magnitude beta minus let us say it is equal to

beta, and if n effective is the effective index then I can write it down as 2 pi over lambda

not times n effective.

If  the  wave vector  corresponding to  this  periodic  refractive  index modulation  or  the

spatial frequency is k is equal to capital k is equal to 2 pi over capital lambda, then if this

k is such that this length is equal to this then if a mode goes like this, and then capital k

takes it here. So, the resultant would be beta minus. So, in this way I can couple power

from beta plus to beta minus, and the condition for this mathematically can be given by

twice of this magnitude that is 2 times 2 pi over lambda B times n effective, it should be

equal to the magnitude of this k it is 2 pi over capital lambda.

So, this gives me lambda B is equal to 2 times n effective times capital lambda. So, this

particular  wavelength  will  satisfy  this  condition,  and  all  the  power  in  this  spectral

component can be reflected back. Typically if I take a silica glass fiber n effective is of

the  order  of  1.5  typical  value  1.5,  and  if  I  consider  the  Bragg  wavelength  as  1.5

micrometer. So, this periodicity required is about 0.5 micrometer.

So, these are sub micron gratings. So, this periodicity is really very small that is why

these Bragg gratings are also known as short period gratings.
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We can study the power evolution in the forward and backward propagating modes by

using coupled mode theory and in coupled mode theory, the amplitude of the forward

propagating mode varies with z according to d A over d z is equal kappa B e to the power

i gamma z and that of backward propagating mode varies as d B over d z is equal kappa

A e to the power minus i capital gamma z, where capital gamma is 2 beta minus k which

is nothing, but phase mismatch if  gamma is equal to 0 then there is phase matching

between the forward propagating mode and backward propagating mode.

Intuitively  I  can  say  that  it  is  clear  that  for  efficient  coupling  between  the  forward

propagating mode and backward propagating modes, you should have phase matching

conditions satisfied. So, gamma should be equal to 0. If I look at these 2 equations the

equation of A contains B and equation of B contains A. So, these are coupled equations

and this  theory is  known as coupled mode theory.  Now this coupling between the 2

modes occurs due to periodic refractive index modulation, and in the grating region if I

write down the refractive index then I can write it down as delta n g square g refers to

grating x y z is equal to n square of x y plus delta n 0 square sign k z, where I have

considered this periodic refractive index modulation is sinusoidal. So, this is sinusoidal

refractive index modulation with special frequency k or wave vector k.

So, if I use this then I can show that this kappa which is known as coupling coefficient is

given by omega epsilon not by 8 integral over x and integral over y psi star del n square

x y psi d x d y where psi is normalized modal field it is power normalized modal field.

Now if I consider a single mode fiber and consider Gaussian approximation that is I



approximate my mode, mode of the single mode fiber by a Gaussian of width w, then

this integral can be written as I is equal to 1 minus exponential minus 2 a square over w

square and then this kappa can be represented in terms of this integral as pi delta n 0

times I over lambda b, where a is the core radius and w is the Gaussian spot size of the

mode.
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So, in order to find out kappa I need to find out overlap integral which is this, and you

can see that it depends only on fiber parameters. What is the modes spot size Gaussian

spot size and what is the core radius. It involves minus a square over w square, and I

know that for a given fiber w over a varies with v like this, this is empirical formula

given by marques. So, I can now find out how this overlap integral with vary with v it is

very  simple  now to do  this.  So,  I  can  see  that  as  V increases,  this  overlap  integral

increases typically around between 2 and 2.4, the value of this  integral  is around 70

percent to 80 percent ok.

So, there is almost 78 percent to 80 percent overlap between the modes via this short

period grating or fiber Bragg grating. So, this with the help of this I can find out what is

the strength of interaction. So, the strength of interaction which is defined by coupling

coefficient and given by pi delta n 0 I over lambda B, now I already know how I varies

with V then I can find out how kappa varies with V. If I take typical value of delta n 0 as



2 into 10 to the power minus 4 and Bragg wavelength as 1550 nanometers then kappa

varies with V like this.

Again I can see that that typical value of kappa for the values of V from 2 to 2.4 is about

0.3 millimeter inverse. So, it is around 0.3 millimeter inverse if you go to shorter values

of V then it can be around 0.2.
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Now,  with  the  help  of  this  since  I  know how a  which  is  the  amplitude  of  forward

propagating mode, and b which is the amplitude of backward propagating mode. So, the

equations describing the variations of a and b with z I already know. So, if I solve these

equations for given kappa for given fiber for giving grating, then I can find out how

much would be the reflectivity. Because from these amplitudes I can find out the powers

and if I find out the ratio between the reflected power at the input end of the fiber, and

the incident power at the input end of the fiber, then I can know what is the reflectivity.

If I work that out then reflectivity comes out to be kappa square, sin hyperbolic square

gamma z,  divided by gamma square cosine hyperbolic  square gamma L plus capital

gamma square by 4 sin hyperbolic square gamma L, where gamma square small gamma

square is kappa square minus capital gamma square by 4. And this expression has been

obtained using the conditions that at the input end of the fiber that is at z is equal to 0 A

is equal to 1 that is all the power is in forward propagating mode, and B at z s equal to l

is 0. So, when light reaches to the end of the grating then at that value of z the power in



reflected mode or the backward mode is 0, which means that all the power gets reflected

at that wavelength lambda B phase matching condition is satisfied. So, 2 beta is equal to

kappa which means capital gamma is equal to 0, if capital  gamma is equal to 0 then

small gamma is equal to kappa.

If I use this in this expression, then the reflectivity of the grating comes out to be ten

hyperbolic square kappa L. If I plot this reflectivity as a function of kappa L, then what I

see that as I increase kappa L the reflectivity of the grating increases, and eventually for

large values of kappa L it will eventually reach the value unity, there would be hundred

percent reflection, but that will occur at the value of kappa L is equal to infinite. But

what I can have is that at kappa L is equal to three if I work this out here, read this out

then at kappa L is equal to 3 reflectivity is almost 99 percent.

So,  this  value  of  kappa  L is  sufficient  for  me,  this  happens  when  I  am  at  Bragg

wavelength. So, if I choose let us say kappa l is equal to 3 then at Bragg wavelength the

reflectivity is 99 percent, now if I slightly move away from Bragg wavelength on either

side then phase matching condition is not satisfied and the reflectivity will drop down.

So, what I anticipate that at lambda is equal to lambda B there should be a peak in the

reflection spectrum, and as I move away from this lambda B the reflectivity would fall

down.
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Here I show how the power in the transmitted and reflected modes vary as a function of

z, what is the evolution of power in the forward and backward propagating modes for

different values of kappa. For a given grating length L is equal to let us say 5 millimeters

I can see that when kappa is the small value say 0.1 milliliter inverse, then then even at l

is equal to 5 I have the transmitted power, transmitted power drops down only by 20

percent and it will almost saturate, and the reflected power is maximum it is around 20

percent, it will take very long length for this power to go beyond this.

However if I increase kappa then I can increase this power, the transmitted power drops

down and the power in reflection mode increases and when I have the value of kappa

around 0.4, then I can see that the power in reflected mode is or backward propagating

mode is more than 90 percent. And if I have the combination of kappa and L is equal to

three then of course, the reflected power would be 99 percent here kappa times l is only

2.4 times 5.
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Let us find out what is the optimum grating length, if I want to have reflectivity let us say

99 percent.  I  can always find out  the  grating  length  required  for  a  desired value  of

reflectivity, because I know that the reflectivity varies at tan hyperbolic square kappa L.

So, L would be tan hyperbolic inverse square root of R over kappa. This plot is for delta

n is 0 is equal to 2 into 10 to the power minus 4 lambda B is equal 1550 nanometers and

for the value of R 0.99. So, in order to have 99 percent reflection.



So, if I vary my fiber parameter that is I vary the value of V then this is how the length of

the grating has to be tuned to achieve 99 percent reflectivity. I can see that if the value of

V is large, then the grating length required is the smaller, and for smaller values of V I

require much larger grating length. It is obvious because if I increase the value of V my

mode is more and more confined in the core and the overlap integral increases. While if I

go to shorter wavelength then the field spreads out from the core and the overlap integral

mind it that this overlap integral since grating is only in the core region.

So, it is the power in the in the core region that matters, so, if power in the core region is

small then the overlap integral would be smaller, and hence you will require much longer

grating to reflect back 99 percent power. 
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Let us work out few examples, if I have a typical fiber Bragg grading with delta n 0 is

equal to 2 into 10 to the power minus 4, and I assume 75 percent overlap between the

forward and backward propagating modes via fiber Bragg grating, then let us calculate

coupling coefficient at 1550 nanometer wavelength and the required grating length for 99

percent peak reflectivity at 1550 nanometer wavelength. I know the coupling coefficient

is given by pi delta n 0 times I over lambda B and delta n 0 is 2 into 10 to the power

minus 4, I is 0.75 and lambda B is 1550 nanometer. So, this gives me the value of kappa

about 0.3 millimeter inwards.



What is the required grating length for 99 percent reflect peak reflectivity. So, I know the

reflectivity is given by tan hyperbolic square kappa L. So, l would be tan hyperbolic

inverse square root of r over kappa r is 0.99 to have peak reflectivity 0.99 percent, and

the value of kappa I have obtained at 1550 nanometer wavelength as 0.0 0.3040. So, if I

put these values here, I will get the grating length about ten millimeters or 1 centimeter.
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Let us now look at reflection and transmission spectrum of the grating. if I incident this

spectrum which  is  broadband  spectrum,  then  out  of  all  these  wavelengths  only  one

wavelength which satisfies the condition 2 n effective capital lambda is equal to lambda

b, that wavelength will be reflected and all the other wavelengths will pass through. So,

in  the  transmitted  spectrum this  wavelength  lambda  B would  be  missing  and in  the

reflection spectrum this wavelength will appear.

Then what is the spectral width of this? This spectral width of this reflection spectrum is

given by delta lambda is equal to lambda B square divided by n effective times L, times

one plus kappa square l square over pi square to the power half. So, if I know all these

values n effective kappa L is given for given reflectivity, and then it will depend upon

what is the value of n effective what is the value of L.

(Refer Slide Time: 27:20)



This is typical reflection spectrum for delta n 0 is equal to 2 into 10 to the power minus

4,grating period about 0.54 micro meter and L is equal to 11 millimeter for a typical

single mode fiber.

So, this grating period with for a given for the given single mode fiber gives me lambda

B is equal to 1550 nanometers. So, I get the peak reflectivity at 1550 nanometers and

look at the value of delta lambda. Delta lambda is about 0.2 nanometers, delta lambda is

the width at which the power falls down to 50 percent of its peak value. So, it is about

this width. So, delta lambda here in in reflection spectrum of fiber Bragg grating is really

very small, it  is 0.2 nanometer or even less depending upon the length of the grating

depending upon other grating parameters and fiber parameters.
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If I look at the spectral width for a typical fiber given by n 1 is equal to 1.447 and n 2 is

equal to 1.444 then if I change the value of V, then delta lambda changes according to

this. For reflectivity 99 percent I know for reflectivity 99 percent kappa L is equal to 3.

So, all the value here in this bracket is fixed now it will depend only on the grating

length, and n effective n effective means the fiber and the Bragg wavelength which also

depends upon fiber parameters.

So, what I see that that as I vary V that is I change my fiber, then delta lambda varies

between let us say 0.15 to 0.25 nanometers, it is in nanometers. Why do I obtain this kind

of variation how can I understand this kind of variation? If I increase V then L decreases

this I have already seen that if I increase V the length required for 99 percent reflection

decreases, if I increase V n effective also decreases. So, if L decreases an n effective

decreases then delta lambda would increase. So, this is how I can understand this curve.

In the next lecture I will work out some more examples, and look into some applications

of fiber Bragg grating.

Thank you.


