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After having understood the modal field patterns of a step index optical fiber now let us

have a look at what is the fractional power in the core, how the power is distributed

between the core and the cladding.
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So, again we are analyzing this kind of step index optical fiber, and we know that the

power is proportional to if psi is the modal field which is basically the electric field, then

the power is proportional to the electric field square integrated over the entire transverse

cross section.
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So, if psi is the modal field then the power would be proportional to integral over r phi

mod psi square r d r d phi.

So, in the core it would be given by some constant Q and this integration over r would be

from 0 to a, and if I want to calculate the power in the cladding then this integration over

r  will  go  from a  to  infinity  because  I  am considering  a  case  where  the  cladding  is

infinitely extended. So, let us calculate the power for even modes, for even modes the

solutions psi are in the region's core and the cladding are given by this, where A and B

are  related  to  each  other  by  boundary  conditions,  here  I  have  used  the  boundary

condition that psi r is continuous at r is equal to a. So, A J i U is equal to B K l W and let

me equate two some other constant C, so I can get these A and B in terms of a single

constant C.



(Refer Slide Time: 02:31)

So, P core is this and if I now substitute the modal field of the core, then it would be of

the form J l square U r over a r d r and then phi. So, phi part would be cosine square l phi

t phi, and this would be the constant which comes out.

C square times Q and then this there would be J l square U for a given mode even J l

square U would be constant because beta is constant for a given mode. So, this I can

simplify like this coz phi solution the phi integral is a straight forward, and then it can be

written in  this  particular  form by doing some mathematical  manipulations  if  you are

interested in the details  of this, then you can refer to the book optical electronics by

Ghatak and Thyagarajan or to introduction to fiber optics by Ghatak and Thyagarajan

any of these books. So, there are the details.

Similarly, in the cladding I can get the power as this where G is a constant then I can find

out the fractional power as power in the core divided by total power and I can express

this in this particular form and again the details can be seen in this book.
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So, I have the fractional power in the core given by this expression. Now I am interested

in how does this look like when I vary V, when I vary the parameters of the fiber and in

this way I vary the value of V normalized frequency, then how the power in the core and

the cladding is distributed how this distribution changes. So, for that let me plot this eta

frictional  power as  a  function  of  V and this  has  been taken from this  paper.  I  have

adopted this. So, it is slightly modified.
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So, what I see that if I increase the value of V then the fractional power in the core

increases. This is a very simple observation here. Another thing that I see is that for LP

01 mode and LP 11 mode LP 12 mode this starts from 0, while for these modes this starts

from 0.5 and what I see that if I do a little mathematics I can show. I can show that for l

is equal to 0 mode, l is equal to 0 mode as the mode approaches to cut off then the

fractional power can be given by eta tending to 0 for l is equal to 0, and eta tends to l

minus 1 over l, for l greater than or equal to 1.

So, I can see for LP 01 more the cut off is 0 LP 01 mode the cut off is 0 and l is equal to

0. So, as I approach to cut off the power is 0. And if I take LP 11 mode then again eta is 0

LP 11 mode cut off is 2.4048. So, as I approach to cut off at 2.4048 it will start from 0;

however, for l is equal to 2 mode this would be half. So, l is equal to 2 mode LP 21 mode

the cut off is around 3.8. So, around 3.8 it will start from 50 percent. So, this is how the

power is power of different ports is distributed among between the core and the cladding.

As and I can see that as we increases as we increases there is more and more power

confined in  the  core  and therefore,  the fractional  power in  the  core  increases  as  we

increases this, this I know from the theory of planar wave guide also.

(Refer Slide Time: 07:44)

We have seen that now let us see some examples for a fiber with n 1 is equal to one point

four five n 2 is equal to 1.44 and a is equal to 4.5 micrometer, if I calculate the value of V

then it comes out to be 4.135 at lambda is equal to 1.55 micrometer and then if I see the



fractional power in the core for various supported modes then it is given like this. For LP

01 mode 95 percent power is in the core. So, if I look at the mode intensity plots then 95

percent power is in the core, this dashed this dashed line corresponds to the core cladding

interface.  So, most of the power is inside the core for LP 11 mode about 86 percent

power is in the core, and 14 percent goes out. For LP 21 mode 68 percent power is in the

core and for LP 02 mode only 38 percent power is in the core.

So,  I  see  that  as  I  go  towards  higher  order  modes  the  fractional  power  in  the  core

decreases. Because higher order modes are closer to cut off; if I look at how the power at

different wave lengths is distributed between the core and the cladding. So, for that I

consider  a  fiber  with n 1 is  equal  to  1.45,  n  2 is  equal  to  1.44 and a is  equal  to 4

micrometer and then here.
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I have tabulated the fractional power in the core for LP 01 which is the fundamental

mode and LP 11 which is the first higher order mode. So, I see that at 0.65 micrometer

wave length, 90 more than 98 percent power for LP 01 mode is located in the core and

96 percent power is located in the core for LP 11 mode. So, as I increase the wave length

I see the general trend that the power in the core for a given mode decreases.

So, as I increase the wave length the mode spreads out, because I know if I increase the

wave length which means I am decreasing the value of V and the mode approaches to cut

off and when a mode approaches to cut off then the field spreads out. So, the fractional



power in the core would decrease. If you look at the modal fields of LP 11 mode at 0.65

micrometer wave length then it  looks like this, we have the value of V at this wave

length is 6.57. So, high value of V. So, very, so most of the power is in the core. But if

you go to 1.7 micrometer wave length the value of V is 2.5 which is very close to cut off

the cut off is 2.4048, and then I see that the field spreads out and there is only 37percent

power in the core.

What happens if I change the numerical aperture of the fiber? So, for that I take a fiber

with cladding refractive index 1.444, core radius four micrometer and I analyze it at 1.55

micrometer wave length. So, now, I change the value of numerical aperture.
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Then what I see as I increase the value of numerical aperture, then the fractional power

in the core increases and this is intuitively correct I expect this intuitively that. As the

index difference between the core and cladding increases, then the then more and more

power is pushed inside the core. The index contrast between the core and the cladding

increases. So, intuitively I think that the core cladding interface this boundary is hard to

penetrate for the field and so, less field extends in the cladding region and there is more

and more field in the core region.

So, that is why the power in the core region increases the fractional power in the core is

very high if the value of numerical aperture is high. When the numerical aperture is low

very low it is 0.05 just 0.05 it is very weekly guiding fiber. So, it hardly guides slight



only 14 percent of light is in the core and 86 percent light spreads out in the cladding. So,

it is really very poor guidance the value of V is very small 0.87 quite close to 0, and

when the numerical aperture is high then of course, the entire field is pushed in the core

V the value of V is very large about 5.7. Now after this I would like to focus on single

mode  fiber  and  because  single  mode  fiber  is  the  fiber  which  is  used  in  long  haul

telecommunication  system,  and  I  would  like  to  first  look  at  some  very  important

parameters of a single mode fiber what are these parameters.

(Refer Slide Time: 14:27)

One is cut off wave length what is the cut off wave length of the fiber, what is the spot

size or mode field diameter or effective area of the fiber, what is bend loss and what are

the  dispersion  properties  of  this  fiber.  So,  we would  look in  to  these  in  subsequent

lectures as we go along. So, let us first look at cut off wave length, what do I mean by cut

off wave length.
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If you look at a fiber, then the single mode condition is given by V is less than equal to

2.4048 equal to sin corresponds to the limiting case, and V is given by V is given by 2 pi

over lambda naught times a times square root of n 1 square minus n 2 square.

(Refer Slide Time: 15:22)

So, if I find out the wave length corresponding to this value of V 2.4048, then this wave

length will come out to be 2 pi divided by 2.4048 times a times square root of n 1 square

minus n 2 square, or I can also express it in terms of numerical aperture because the

square root of n 1 square minus n 2 square is nothing, but numerical aperture or I can



also represent it in terms of relative index difference delta, because delta is n 1 square

minus n 2 square over two n 1 square. So, in this way I can calculate the value of lambda

C and what happens that for all the wave lengths greater than lambda C the fiber is single

mode, and for wave lengths is smaller than lambda c or shorter than lambda c the fiber is

multimode or few moded. This wave length lambda C give you a demarcation between

the  single  mode  operation  and  multimode  operation  although  this  wave  length

corresponds to the cutoff of LP 1 1 mode, but in general we call it the cut off wave length

of the fiber. So, when I say cut off wave length of the fiber then it means the cut off wave

length of LP 1 1 mode of the fiber.

Next thing is propagation constant if I look at the b V curve of LP 0 1 mode, because it is

a single mode fiber. So, only LP 0 1 mode is guided, if I look at the b V curve of LP 0 1

mode it  looks like this.  This  I  have obtained  by solving  the transcendental  equation

corresponding  to  l  is  equal  to  0  mode  and  extracting  the  first  root  of  that  which

corresponds  to  LP  0  1  mode.  So,  this  exact  means  by  numerically  solving  the

transcendental equation or Eigen value equation.
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So, it goes like this. So, do I need to refer back always to this curve if I am given a fiber

and wave length then I know the value of V, and I want to find out the value of b or

propagation constant then I need to refer back to this curve always can I do something

that I can fit some equation to this. So, that I just use that equation and extract the value



of b if I know the value of V. And it can be done what is done what is seen that if you fit

this equation to this curve, then it fits very well for a is equal to this and b is equal to this

in the range 1.5 to 2.5 in the range of V which goes from 1.5 to 2.5. 

So, this is an empirical relation between b and V, which is given by a minus b over V

whole square where a is equal to 1.1428 and b is close to 1. So, I can always use this

empirical relation if the value of V lies in this range to obtain the propagation constant of

LP 01 mode of the fiber, and it becomes very handy while doing calculations. How good

this approximation is, how good this empirical relation is for that I have superposed the

values of b obtained by this empirical relation, on the values of V which I have obtained

by solving the transcendental equation, and I find that the agreement is quite good if I

look at this graph I can also have the quantitative estimate of this fitting how good this

fitting is.

For that I will  do in the next slide, but if I know now if I now know this empirical

relation, then my life becomes very easy I need not to go to solve the transcendental

equation again and again for example, if I have a fiber with n 2 is equal to 1.45, delta is

equal to 0.64 percent, a is equal to 3 micrometer and I consider a wave length of 1546

nanometer. So, these values correspond to a value of V which is 2 and if I put it here then

I find out the value of b immediately as 0.41616 and from there I can extract the value of

n effective.
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Now, coming back to how accurate it is, I have tabulated the values of b obtained by

solving the transcendental equation and obtained by the empirical relation given in the

previous slide, and I have looked at the percentage difference between the two; and I see

that the maximum difference is 0.23 percent in the range of V going from 1.5 to 2.4. So,

in this range it is a very good approximation I can use this empirical relation without any

problem. Next important parameter of a single mode optical fiber is the spot size, when

power exits from a single mode fiber, and if I capture the field or the intensity.
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Which comes out of the fiber just at the output end of the fiber as it exits from the fiber,

then it looks like this. When I look at it then it very much resembles to with the spot

which comes out of a laser beam. So, it immediately tends me to think that weather can I

weather can I approximate it by a Gaussian because the output of a Gaussian is output of

a laser is Gaussian of a single mode laser.

So,  what  I  try;  I  try  to  fit  a  Gaussian  to  this  kind  of  distribution  and a  Gaussian  I

represent as sy r is equal to a e to the power minus r square over w square, where a

represents what is the value at the center and w is the width of the Gaussian. So, what I

do? I plot the exact field in blue line, which I obtained in the form of Bessel functions

and then I plot in green color the best fitted Gaussian. How do I fit I will explain in the

next slide and what I see that this fitting is very good, this fitting comes out to be very

good at least for this case.



So, I can very well use this Gaussian approximation to represent this field, and why I

want to do this? Because using Bessel functions all the time is not a convenient thing and

working with Gaussian is very easy. So, I express my modal field with a Gaussian and

then with the help of this I can estimate or define the spot size the size of this spot as you

know that the field goes down to 0 when r tends to infinity, but what is the size, what is

the region in which the maximum field is there. So, that we can define by r is equal to w

because it r is equal to w the modal field drops down to 1 over e of its peak value, and

intensity drops down to 1 over e square of its peak value. So, it can give me a good

estimate of the size of the spot. So, this w is known as Gaussian spot size, and two w

twice of this value is basically the diameter mode field diameter.

(Refer Slide Time: 26:10)

And I can find out the effective mode area by pi w square. How do I find out the best

fitted Gaussian? The best fitted Gaussian has two parameters. So, I need to optimize 2

parameters a and w, a is easy to do because it can be found out what is the maximum

value of the field, and to find out w what I do I take the overlap of this Gaussian with the

exact field which is defined in terms of Bessel function. So, I take this overlap of the

Gaussian with this field and I vary the value of the w, in order to obtain the maximum

value of eta. The value of w which gives me which gives me the maximum value of

overlap that gives me the best fitted Gaussian.
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Then I tend to think just in the same way I have defined an empirical relation between

the propagation constant and V, can I do the same for the spot size also. So, that I need

not to all that time fit this Gaussian. So, there is an empirical relation which relates the

spot size with normalized frequency V, and it has been given by d marquis. So, with this

relation I can find out the spot size of a given fiber if I know the value of V. And this

empirical relation is quite accurate in the range of V from 0.8 to 2.5. So, if I plot it. So, it

goes like this and this is an obvious result it as I increase the value of V as I know the

confinement in the core increases and therefore, the value of w over a would decrease.

Now let  me find out how accurate this approximation is how accurate  this  empirical

relation is. So, for that I take two representative points.
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One is for smaller values of V that is at V is equal to 0.9, and if I see the modal filled

here it looks like this, and I find out the value of w by two methods one is by Bessel

functions the exact value, and another is from empirical relation. So, I find that at V is

equal to 0.9 the exact value of w is about 30.7 micrometer, while empirical relation gives

me a value of 31.8. I take another representative point at V is equal to 1.8 this is the

model  field and the value of  w obtained from exact  and empirical  formula  give me

almost the same value they are in good agreement. So, I find that for lower value for

smaller values of V there is some discrepancy, but this empirical formula works very

well when I go towards higher values of V.

Now, let me look at the fractional power in the core and see how good the Gaussian

approximation and empirical fitting is. 
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So, what I have done well I have calculated now, the fractional power in the core which

is given as P core over P total, while considering the Gaussian spot size. So, as I have

said that it is very easy to work with Gaussians.

So,  now,  calculating  these  integrals  would  not  be  very  difficult  if  you  use  sy  as  a

Gaussian. So, when I do this then it comes out to be 1 minus e to the power minus 2 a

square over w square, and when I plot it goes like this. To find out how accurate it is I

again take two representative point that V is equal to 0.9 and at b is equal to 1.8, and I

find that at smaller values of V there is a huge discrepancy, it is because at lower value of

V there is a small discrepancy between the exact value and the and the Gaussian and

empirically fitted value, but this small discrepancy is amplified because this appears as

the it appears in the form of e to the power minus something. So, this gets amplified a

lot;  however,  at  the higher  values  of V the discrepancies  is  small  and therefore,  the

discrepancy in fractional power is also very small. So, the agreement is good.

So, in the next lecture I would look in to some other ways of defining the spot size, and I

would also look into various examples to understand the cut off and spots sizes.

Thank you.


