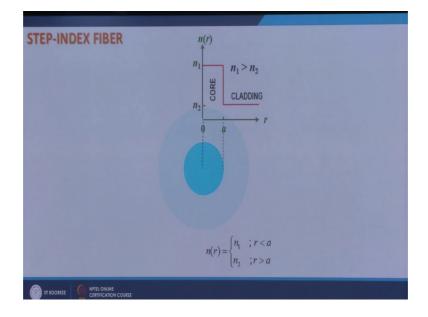
Fiber Optics Dr. Vipul Rastogi Department of Physics Indian Institute of Technology, Roorkee

Lecture - 21 Optical Fiber Waveguide- III

In the last lecture we had done the modal analysis of optical fiber and we had obtained the transcendental equation satisfied by the propagation constants of the modes, we had also seen the cut offs of various modes.

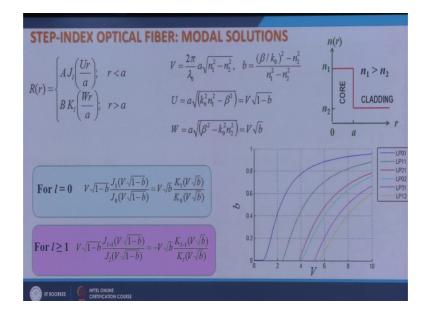
Now in this lecture we will extend the analysis and see how the modal fields look like.

(Refer Slide Time: 00:49)



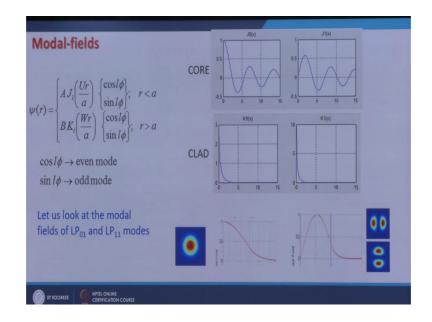
So, this is the step index fiber which we are analyzing, which has a high index core of refractive index n 1 of radius a and the cladding of refractive index n 2.

(Refer Slide Time: 01:03)



And we have done this that the radial part of the modal fields is given by A J I U r over a in the region r less than a which is the core, and B K I W r over a in the region r greater than a which is the cladding. We had also defined the normalized frequency V normalized propagation constant b and U and W are defined by these relations and you can also express them in terms of normalized parameters V and b. So, we had seen that the propagation constants of the linearly polarized modes of this fiber satisfy these transcendental equations or the Eigen value equations. So, after solving these equations for a given value of V, I can find out the propagation constants b of various modes of the fiber, and if I plot them as a function of V, so they look like this. So, this we had done.

(Refer Slide Time: 02:12)



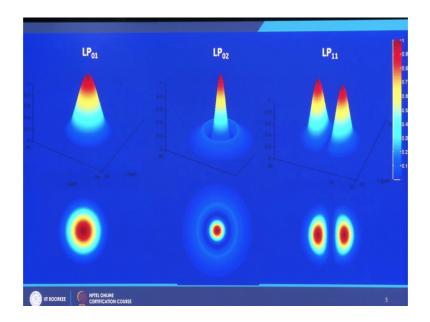
Now, let us look at how the modal fields look like. So, the total modal field would be given by the radial part and the angular part or Azimuthal part. In phi direction I can have solutions cosine L phi and sin L 5 and I label these 2 solutions by 2 different names I call cosine alpha solution as even mode and sin alpha solution as odd mode.

Now, let us look at the modal fields of L P 0 1 and L P 1 1 modes of this fiber. So, since we are looking at L P 0 1 and L P 11, which means here L is equal to 0 here L is equal to 1. So, in the core I will have solution for L P 0 1 mode as J 0 U r over a, and for L P 1 1 mode j 1 U r over a. So, let me plot J 0 x and J 1 x, they look like this. In the cladding I will have the solutions K 0 W r over a and K 1 W r over a. So, let me plot how K 0 x and K 1 x look like. So, when I combine this k. So, in the core I will have this solution and in the cladding I will have this solution, and since these are the first modes of L is equal to 0 and L is equal to 1 respectively. So, I will not have any 0 in this and I will not have any 0 in this except a 0 at r is equal to 0.

So, for L P 0 1 mode in the core the field will go like this, and in the cladding this function will take over. For L P 11 mode the field in the core would be given by J1. So, it would go like this without any 0 except a 0 at r is equal to 0 and then this K1 function will take over. So, this is how the radial part of the modal fields would look like, what about the angular part? Angular part is simple for L is equal to 0 you have cosine alpha is equal to 1 and there is no contribution from sin L phi because it would be 0 everywhere. So, I will have only this kind of solution. So, you take this in radial part and then you go in angular part rotate it in phi direction and you will get this kind of variation.

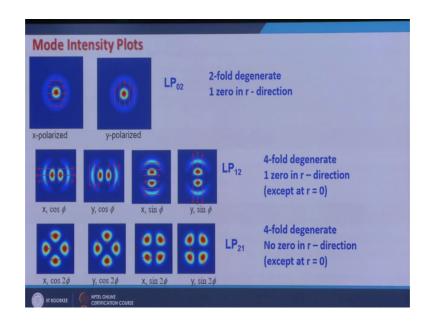
However, in for L P 11 mode, I can have cosine phi solution and sin phi solution. So, if I take cosine phi solution that is at phi is equal to 0 I have a maximum, and then phi is equal to pi by 2 I will have 0 and so on. So, if I rotate it like this in phi direction, then I will get this kind of variation this kind of density plot or intensity pattern. If I take sin phi solution, then sin phi would be 0 at phi is equal to 0 and then it would be maximum at phi is equal to pi by 2 and then if I now rotate it. So, it would be 0 at phi is equal to 0 it would be maximum at phi is equal to pi by 2. So, it will give me this kind of solution. So, L is equal to 0 mode will only be of this kind that is that is I cannot have 2 fold degeneracy for L is equal to 0 mode as I can have for L is equal to 1 mode here or L is equal to nonzero mode L nonzero mode. I can look at the 3 d plot of these.

(Refer Slide Time: 06:27)



So, if I look at the various modes. So, this is how the L P 0 1 mode would look like and if you view it from the top it would look like this. L P 0 2 mode L P 0 2 mode will admit 1 0 because it is the second mode in L is equal to 0 series. So, it will admit 1 0 in the core. So, it will go down this is the intensity plot this is the intensity plot. So, if you look at look at it from the top it would look like this and there would be a 0 at r is equal to something here in the core itself. If you look at L P 11 mode it would look like this, it would not have any 0 in r direction except a 0 at r is equal to 0 and these are the this is the plot of even mode even L P 11 mode.

(Refer Slide Time: 07:26)



So, if I again look at these plots, now I have L P mode say or linearly polarized modes it means that I can have 2 independent or orthogonal polarization states, I can label them as x polarized and y polarized because that is the direction of propagation. So, I can label them as x polarized and y polarized. So, if I look at L P 0 1 mode, then it can be x polarized or y polarized. So, this L P 0 1 mode is twofold degenerate and it does not have any 0 in r direction. If you look at L P 11 mode then I can have cosine phi solution, and in cosine phi solution itself I can have 2 polarizations y polarized and y polarized. So, it would be 2 it would be fourfold degenerate, and again there would be no 0 in r direction except a 0 at r is equal to 0. If I look at L P 0 2 mode, then L P 0 2 mode would again be 2 fold degenerate you will have x polarized and y polarized.

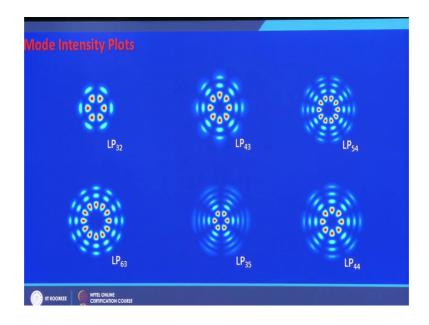
If you look at the second mode in L is equal to one series that is L P 12 mode, then it will have one 0 in r direction, except a 0 at r is equal to 0. So, the modal fields would look like this and again this would again be fourfold degenerate. This is L P 21 mode; now in L P 21 mode because L is equal to 2. So, L is equal to 2 though. So, the 5 solutions are cosine 2 phi and sin 2 phi and they will have 4 zeros in phi directions that you can see here and in x direction there would no n sorry in r direction there would not be any 0 at except at r is equal to 0. So, so this is how the modal fields would look like for even and odd modes.

(Refer Slide Time: 09:56)

P _{Im} mode			
	os in ϕ – directior	n:2 <i>l</i>	
Number of zer except any zer	os in r – direction ro at $r = 0$)	: <i>m</i> –1	
	Mode	No. of zeros in ϕ -direction	No. of zeros in r-direction (except at r = 0)
	LP ₀₁	0	0
	LP ₀₂	0	1
	LP ₁₁	2	0
	LP ₁₂	2	1
	LP ₂₁	4	0
	LP ₃₁	6	0
	LP ₅₄	10	3

So, in general what I get for L P L m mode, the number of zeros in phi direction would be 2 L and the number of zeros in r direction would be m minus 1 except any 0 at r is equal to 0. So, if I have various mode I can immediately find out the number of zeros in r and phi direction for example, in L P 2 1 mode there would be 4 zeros in phi direction and no 0 in r direction. I always exclude a 0 at r is equal to 0, for L P 31 mode, I will have 6 zeros in phi direction and no 0 in r direction. For L P 5 4 mode I will have 10 zeros in phi direction, and 3 zeros 4 minus 1 3 zeros in r direction. So, if I know any mode if I am given any mode then I can immediately find out the number of zeros in phi and r direction, and I can also plot the intensity patterns of those modes.

(Refer Slide Time: 11:21)



For example these are the intensity plots of various higher order modes, this is L P 3 2 mode L P 3 2 mode will have 6 zeros in phi direction. So, I have 6 zeros 1 2 3 4 5 6 zeroes in phi direction, and 2 minus 1 that is one 0 in r direction except a 0 at r is equal to 0. L P 4 3 mode will have 8 zeros in phi direction and 2 zeros in r direction. L P 5 4 mode 10 zeros in phi direction and 3 zeros in r direction 1 2 3. L P 6 3 mode 12 zeroes in phi direction 2 zeroes 3 minus 1 2 zeroes in r direction and so on. So, if I am given any mode then I can immediately draw the intensity pattern corresponding to that mode.

(Refer Slide Time: 12:36)

o estimate the number of modes:	Cut-off	Mode
. Calculate the value of ${\cal V}$	0	LP ₀₁
. Find the cut-offs of various modes using the cut-off conditions	2.4048	
and the zeros of Bessel function	3.8317	LP ₀₂
. Arrange the modes in increasing order of their cut-offs	3.8317	LP ₂₁
. The modes having cut-offs higher than the value of V are guided	5.1356	LP ₃₁
For example:	5.5201	LP ₁₂
If <i>V</i> = 5.3		1. 19 T

Now, the question is how do I estimate the number of modes here, in planar wave guide it was easy I just calculate the value of V divide that value of V by pi by 2.

And find out the closest, but greater integer and that will give me the number of modes; here the cut offs are not evenly spaced and there are several series corresponding to L. So, where do they fit I do not know immediately. So, what is the procedure of estimating the number of modes here? So, the first step is the same you first calculate the value of v. So, if you are given a fiber and the wave length, first you calculate the value of V, then you find out the cut offs of various modes using the cut off conditions and the zeros of Bessel functions. So, if you have the zeros of Bessel functions and cut off conditions for various modes you know for L is equal to 0 mode, the cut off condition for L not equal to 0 cut off conditions which are in terms of the zeros of Bessel functions.

So, you find the cut offs and then arrange the modes in the increasing order of their cut offs. So, for example, the fundamental mode L P 0 1 mode has 0 cutoff, L P 11 mode has 2.4048 3.8317 is for L P 0 2 and L P 2 1, 5.1356 is L P 3 1, 5.5201 is L P 1 2 and so on. So, you arrange them arrange the modes in increasing order of their cut offs, and then locate the value of V here and find out how many modes are above that value of V and those would be the number of modes supported by the fiber. Let me work out an example if for a given fiber and given wave length I calculate the value of V and it comes out to be 5.3 then I locate this 5.3 in this table which is here and I count the modes above this, 1 2 3 4 5. So, these modes L P 0 1, 11, 0 2, 21 and 3 1 these modes are guided.

I can also find out the total number of modes by including their degeneracies, I find that there are 2 modes which have L is equal to 0. So, there will be only 2 fold degenerate. So, they comprise of 4 modes, and then I have 1 2 3 modes which are L is equal to non L as L is equal to not 0. So, so they will have 4 fold degeneracy and they will comprise of 12 modes. So, I will have 12 plus 4 16 total modes including the degeneracies. So, this is how I can calculate the number of modes.

(Refer Slide Time: 16:15)

Number of modes
If $V < 2.4048 \rightarrow$ Single-mode fiber
If $V >> 1$ (typically more than 10), then the number of modes (N) can be estimated by using the following formulae
For a step-index fiber $N \approx \frac{V^2}{2}$
For a graded-index fiber with power-law profile $N \approx \frac{1}{2} \frac{q}{q+2} V^2$

Of course if V is less than 2.4048, then there would only be one mode supported of course, there would be it is twofold degenerate. So, rigorously it supports 2 modes corresponding 2 polarizations, but as a convention I call it single mode fiber because for a given polarization it has only mode. So, for V less than 2.4048 I have a single mode fiber and this is how the cut off condition or for single mode operation is coming; because 2.4048 is the cutoff of first higher order mode which is the L P 11 mode. If V is much much larger than one typically more than 10 or around 10, then the number of modes can be estimated using the approximate formula which are given as for a step index fiber, the approximate number of modes are V square by 2 and for a graded index fiber which power law profile which is characterized by profile parameter q, the number of modes can be estimated by half of q over q plus 2 times V square. So, if it is parabolic index fiber then q is equal to 2 then the number of modes would be V square by 4.

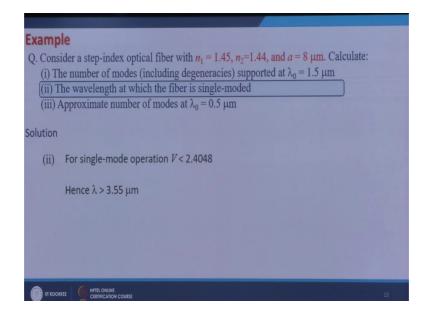
(Refer Slide Time: 17:57)

Example	
Q. Consider a step-index optical fiber with $n_1 = 1.45$, $n_2=1.44$, and $a = 8 \mu m$. Calculate: (i) The number of modes (including degeneracies) supported at $\lambda_0 = 1.5 \mu m$ (ii) The wavelength at which the fiber is single-moded (iii) Approximate number of modes at $\lambda_0 = 0.5 \mu m$	
Solution	
(i) $V = \frac{2\pi}{\lambda_0} a \sqrt{n_1^2 - n_2^2} = 5.697$	
Modes supported: $LP_{01},LP_{11},LP_{02},LP_{21}$ and LP_{31} and LP_{12}	
Total number of modes (including degeneracies: 20	
	12

Let me work out some examples, let me consider a step index optical fiber with co refractive index n 1 is equal to 1.45, cladding refractive index n 2 is equal to 1.44 and core radius 8 micron, and I want to find out the total number of modes including degeneracies supported by the fiber at lambda naught is equal to 1.5 micrometer. So, the procedure is very simple you have to first find out the value of V, if you find out the value of V for these parameters then it comes out to be 5.697.

If you locate this value of V in the table which you have created by arranging the modes in increasing order of their cut offs, then you find that these modes are supported L P 0 1, 11 0 2, 21, 3 1 and 1 2. Now if you include the degeneracies of all these modes and calculate the total number of modes then they come out to be 20. So, so with this value of V the number of modes would be around 20, you can also see that if you calculate using V square by 2, V square by 2 would roughly be because it is 6 it is close to 6. So, 6 squares 36, 36 divided by 2 is approximately 18. So, little more than 18 and here you are getting20. So, they are close.

(Refer Slide Time: 20:00)



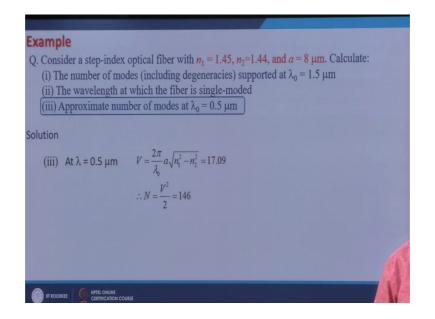
Second is the wave length at which the fiber is single moded, if I want to find out the wave length at which the fiber is single moded or the wave length range in which the fiber is single moded then I know the single mode condition for a fiber is V should be less than 2.4048 and I have the expression for V.

(Refer Slide Time: 20:30)

 $V = \frac{2 \operatorname{TI}}{\lambda_0} a \sqrt{n_i^2 - n_i^2}$ $c < \phi < 2\pi$ $cos 2 \phi$ $2\phi = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$ $\label{eq:phi} \ensuremath{\boldsymbol{\varphi}} = \ensuremath{\boldsymbol{\Xi}}_{1}^{}, \ensuremath{\boldsymbol{\Xi}}_{1}^{}, \ensuremath{\boldsymbol{\Sigma}}_{1}^{}, \ensuremath{\boldsymbol{\Sigma}}_{1}^{}, \ensuremath{\boldsymbol{\Xi}}_{1}^{}, \ensure$

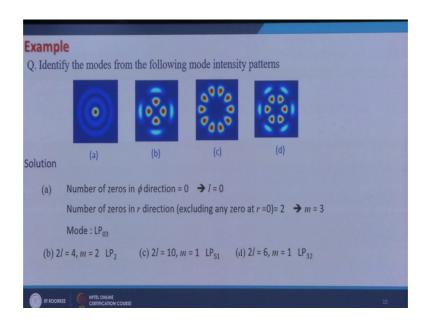
Which goes as V is equal to 2 pi over lambda naught times a times square root of n 1 square minus n 2 square. So, if I find lambda naught from here, then I will see that for lambda naught greater than 3.55 micrometer, V would be less than this and therefore, in this range of wave length the fiber would be single moded.

(Refer Slide Time: 21:02)



Third part is approximate number of modes at lambda naught is equal to 0.5 micrometer. So, I again calculate the value of V at 0.5 micrometer, and it comes out to be about 17 which is much larger than one, then I can find out the approximate number of modes by V square by 2 and it comes out to be about 146. So, this fiber will support 146 modes.

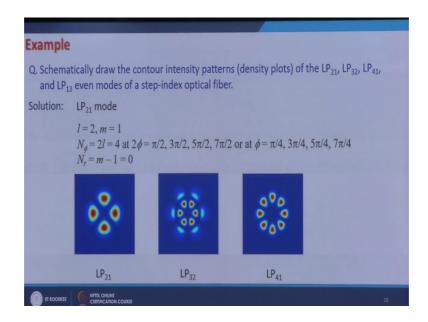
(Refer Slide Time: 21:40)



Now, let me work out some examples on identification of modes from they are given intensity patterns, how do I identify various modes from their given intensity patterns. So, let us look at this, this one is easy. If I go in phi direction I take any value of r and go in phi direction I do not encounter any 0. So, the number of zeros in phi direction is 0 which means 12 is 0, which means L is equal to 0. Second thing I do is I count the number of zeros in r direction. So, I take any value of phi and for that value of phi I move in r direction and an end I encounter 1 and 2 2 zeros, the number of zeros in r direction is 2. So, m is equal to 3 because m minus 1 is equal to 2.

So, this mode is L P 0 3 mode, similarly for this mode the number of zeros in phi direction the number of zeros in phi direction is 4. So, 2 L is equal to 4 L is equal to 2 and number of zeros in r direction you exclude 0 here. So, it is only one. So, m minus 1 is equal to 1 which means m is equal to 2. So, this is L P 2 2 mode. Similarly here it is L P 5 1 mode and this is L P 3 2 mode. So, in this way I can identify any mode.

(Refer Slide Time: 23:33)



Next example is schematically draw the contour intensity plots or density plots of these modes, and I just want to draw the patterns of even mode. So, cosine alpha solution. So, let me do it for L P 21 mode. So, for L P 21 mode what I have L l is equal to two. So, number of zeros in phi direction are 2 l. So, they are 4. So, now, where these 4 zeros are located? I know that if you go in phi direction then phi ranges from 0 to 2 pi, now you have solution which has cosine 2 phi. So, you now find out the zeros of this cosine 2 phi they will occur at pi by 2 then 3 pi by 2 and where do you stop you stop because phi goals phi goes up to 2 pi then 2 phi will go up to 4 phi. So, until you cross or reach 4 pi you do not stop. So, 3 pi by 2, phi pi by 2 and then 7 pi by 2, after that it would be nine

pi by 2 which is more than 2 pi. So, you stop here. So, here these 4 zeros would be located which means phi is equal to pi by 4, 3 pi by 4, 5 pi by 4 and 7 pi by 4.

So, here you have 0 this is pi by 4, this is 2 pi by 4, this is 3 pi by 4, 4 pi by 4, 5 pi by 4, 6 and this is seven pi by 4. So, here you have 0 and in between you will have the intensity and m is equal to 1. So, there would not be any 0 in r direction except a 0 at r is equal to 0. So, you will have intensity something like this. So, this is how you will plot the intensity. So, this is how it would look like similarly for L P 3 2 mode you will have 6 zeros in phi direction and you can in the same way you can calculate the values of phi where the zeros will occur and since m is equal to 2. So, there would be 1 0 in r direction, in the same way you can plot for L P 4 1mode and L P 1 3 mode.

So, today we have learned about the mode modal fields, in the next class we would look in to what fraction of power of these modes is confined in the core and of and about various parameters of a single mode fiber.

Thank you.