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Lecture - 19
Optical Fiber Waveguide- I

After  having  understood  the  light  propagation  in  planar  waveguides  in  the  previous

section; now in this section we will analyze light propagation in an optical fiber- the

modes of light propagation in an optical fiber.

(Refer Slide Time: 00:37)

So, if I look back to planar waveguide where the refractive index variation is only in one

direction x and the propagation direction is z, then I had seen that the modes are given by

these E and H E is equal to E of x e to the power i omega t minus beta z. And H is equal

to H of x e to the power i omega t minus beta z.

You remember that these E and H are not constants, if they are constants then they are

plane waves. But here E is a function of x and H is a function of x, so they are not plane

waves propagating in z direction. But we had seen that these are the superposition of two

plane waves: one going in plus x z direction and another going in minus x z direction.

And that gives us a standing wave pattern in x direction which flows in z direction. So,

they are the modes.



If I look at rectangular channel waveguide, so now if I have confinement in x as well as

in y, so refractive index variation in x and y both. So, this is the kind of profile. Then the

modes would be given by E is equal to E of x y e to the power i omega t minus beta z

and H is equal to H of x y e to the power i omega t minus beta z. So, these E and H

would now be the functions of x and y both. So, the confinement is in both the directions

x and y, and those fields will propagate in z direction with certain propagation constant

beta.

If  now  I  convert  this  into  a  cylindrical  geometry  then  it  becomes  an  optical  fiber

waveguide. I can represent the refractive index profile in x and y; n s square x and y, but

because  of  cylindrical  geometry  it  is  much more  easier  to  analyze  the  structure  if  I

represent this refractive index profile in cylindrical coordinates: so r phi. So, r phi are the

transfers coordinates and z is the longitudinal along which the light is propagating.

So, now what would be the modes of this kind of a structure? Well, they can be given by

E r phi e to the power i omega t minus beta z and H are phi e to the power i omega t

minus beta  z;  so this  E which is  a function of r  and phi,  so this  particular  function

propagates in z direction with certain propagation constant beta. So these are the modes.

In all the three cases what I observed is the direction of propagation z is common. So, I

would like to make use of this to analyze optical fiber. Let me go back to the modes of

the planner waveguide.
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So, I had TE-modes with non-vanishing components E y H x and H z and TM-modes

with non-vanishing components H y E x and E z. And these three equations relate these

three non-vanishing components here, and these three equations relate the non-vanishing

components of TM-modes. So what I have done actually, I found out E y and then I can

get H x and H z from these equations. So, once I know E y I had formed the differential

equation in E y solved the equation for E y got the modal fields. So, once I get E y then

from there I could get H x and H z.

Similarly here I get H y first and then E x and E z and that is how I have the complete

solution. But, as I have seen in the previous slide that the common thing in all the three

structure is the longitudinal direction z. Can I utilize this here? Well, if instead of solving

for E y and then getting H x and H z from here I can also do another thing that I first

form the equation in H z solve it for H z and then get E y and H x.

Here what I notice is that the only longitudinal component here is H z, and E z is 0. And

in  this  case  I  can  do  the  same  thing,  and  here  I  notice  that  the  only  longitudinal

component is E z and H z is 0. So, I can define my TE-modes in such a way that the

fields for which E z is equal to 0 our TE-modes and if I have H z is equal to 0 then they

are TM-modes. If E z is equal to 0 then they are TE-modes and if H z is equal to 0 then

they are TM-modes.

Now let us look at an optical fiber.
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So, in optical fiber I have these E and H, if I substitute these solutions; if I substitute

these into Maxwell’s equations del cross E is equal to minus mu naught del H over del t

and del cross H is equal to epsilon del E over del t then of course I will get 6 equations.

The only thing is that I should now use cylindrical polar coordinate system r phi and z

and see what these 6 equations are. So, these 6 equations will give me the transverse

components E r and E phi in terms of longitudinal components E z and H z.
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So, these are the 6 equations which I get from those to Maxwell’s equations.
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What I see here is that these mathematical equations from 1 to 6 these equations if I do

mathematical  manipulation  of  these  6  equations  then  they  can  lead  to  these  two

equations: one in E z and one in H z. So, I can form a differential equation in E z or H z.

Solve these equations and then get E r, E phi, H r, H phi from these E z and H z using

those 6 equations.

However, what I see that if you look back to those 6 equations; let me look back to those

6 equations. I cannot find an instance where I can have only E z or only H z; that is I am

not able to find out where E z is not equal to 0 and H z is not equal to 0 at one time. I

have that simultaneously both are nonzero; which means that now the polarizations are

coupled, I cannot separate two orthogonal polarizations. So, two polarization are coupled

and in general what I will get I will get hybrid modes. I cannot get TE polarization and

TM polarization in general. 

That I could be able to do in case of planar waveguide, that this is TE polarization and

this is TM polarization, but here in general it is difficult. So, E z naught is equal to 0 and

H z naught is equal to 0 simultaneously are there, so I cannot decouple to polarizations.
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However there is one particular case where I can still have this de coupling. And this

case  is  when  there  is  no  phi  dependence  in  the  solutions;  when  there  is  no  phi

dependence  in  the  solution  then  let  us  see  what  happens.  So,  if  there  is  no  phi

dependence then I put these del phi terms 0 everywhere. So, these del phi terms are not



there then I can see that in these three equations I have only E z: E z, E z, E z, and there

is no H z. So, in these three equations if I considered these three equations then H z is

equal to 0. And in these three equations there is no E z, so E z is equal to 0.

So,  only for  this  case I  can separate  out the two polarizations;  I  can de couple  two

polarizations TE and TM.
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So now, for phi independent solutions we can have two cases. One is E z is equal to 0

and H z is not equal to 0, which is nothing but the case of TE-modes. And another is

when E z is not equal to 0 and H z is equal to 0, which is nothing but the case of TM-

modes. So, in this way I can separate out two polarizations. But in general what I will

have? I will have E z not equal to 0 and H z not equal to 0 simultaneously.

So, E z not equal to 0 H z not equal to 0 simultaneously it means in these kinds of modes

two polarizations will be there and they are called hybrid modes. In these hybrid modes

there can be two instances: one is when H z makes larger contribution than E z, then we

label them as HE-modes, and when E z component makes larger contribution than H z

then we label them as EH-modes. So, in fiber I can have TE-modes, TM-modes HE-

modes, EH-modes, ok.

And these modes are also known as vector modes of the fiber.
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Here I have plotted some typical vector modes of the fiber and their electric fields. So,

this is a typical TE 01 mode, this is TM 0 mode, this is HE 11 mode, this is HE 21 mode.

But  the  fiber  that  we practically  use  has  a  small  index  contrast.  The  index contrast

between the core and cladding.

(Refer Slide Time: 13:30)

The relative index difference between the core and the cladding is typically 0.3 percent

which is  very small.  And if  you look back to the analysis  of your symmetric  planar

waveguide  or  even  asymmetric  planar  waveguide:  we  see  that  if  the  index  contrast



between the high and low index regions is small then the propagation constants of TE

and TM polarizations they merge. It is very difficult to distinguish between TE and TM

polarization in terms of their propagation constant if index contrast is a small.

So,  here  we  use  that  fact  that  if  index  contrast  is  a  small  then  the  fiber  will  not

distinguish between this polarization and this polarization. So, in such kind of fibers we

can still have the modes which are linearly polarized. That is if one is polarized like this

then another has to be like this or if there is any arbitrary polarization then that arbitrary

polarization  can  always  be  represented  as  the  superposition  of  this  and  this  two

orthogonal polarizations: horizontal and vertical.

So, in case of weekly guiding fiber what we have are linearly polarized modes and we

can  have  two  orthogonal  polarizations  which  have  nearly  the  same  propagation

constants. And now if I say that psi is the transverse component of electric field so you

have a fiber and psi is the transverse component of the electric field then it satisfies the

equation: del square psi is equal to epsilon naught n square mu naught del 2 psi over del

TE square, this psi is capital psi so it is a function of all the spatial coordinates as well as

time.

In general this n s square is a function of r and phi. And if this is a function of r and phi

then I can in general write this capital psi which is a function r phi z and t as psi small psi

of r phi e to the power i omega t minus beta z, because n square is not a function of z. So,

z part can be separated out. And this is how the solution of z part and t part will come

out. We have seen this several times.

So now, we want to find out this psi r phi. This function, this function, and see how this

propagates. This function psi r phi represents the mode which travels with propagation

constant beta. So, the problem reduces to find out this now.

For that what I do? I put this capital psi back into this wave equation and when I do this

then this equation becomes this: del 2 psi over del r s square plus 1 over r del psi over del

r plus 1 over r s square del 2 psi over del phi square plus k naught square n square of r or

r phi minus beta square psi is equal to 0.



In this  course we will  confine,  we will  limit  our  discussion only to  refractive  index

profiles which do not depend upon phi. So, we will consider only n square of r and not n

square of r phi.

(Refer Slide Time: 17:47)

So, now this is the equation. And if n square is a function of r only then this solution psi r

phi can be separated out in r and phi. I can separate out of r part, and I can separate out

phi part; and this psi r phi as I have said earlier that they are now the scalar modes or

linearly polarized modes.

So, since n square is a function of r only naught of phi, so psi r phi can be written as R of

r and capital phi of phi. And if I now put this back into this equation then I can separate

out r apart from phi part. So, I get r square over capital R d 2 R over dr square plus small

r over capital R d capital R over d small r plus r square k naught square n square r minus

beta square is equal to minus 1 over phi d 2 phi over d phi square. So, I have separated

them out, the usual procedure now is to equate it to some constant. And since this is

second order equation, so I will take the constant in the form of the square.

So, I take it as l square. So, first let me solve this phi part and the phi solution comes out

to be cosine l  phi and sin l  phi. I  make the use of the fact  that in phi direction the

solutions are periodic. So, you start at some phi and then you make a round of 2 phi you

come back to the same point. So, capital phi at phi plus 2 pi is same as phi at phi. So, that



there is only single solution, then this restricts the values of l to only integer values. So, l

can only be 0 1 2 and so on.

So, this is the phi solution. Now for each value; and we see that in phi direction now the

solutions are discrete, the solutions are discrete because of this condition. So, not all the

values of l are allowed, only certain discrete values of l are allowed which are integer

values. Now for each of these integer values of l I can find out the solutions r. So, let me

now look at r part.

So, the r equation is r squared d 2 R over dr square plus r dR over dr plus k naught

square n square of r minus beta square times R square minus l square times R is equal to

0. So, this is the r equation.
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And I can solve this r equation for a given n square of r. What is the n square of r? I am

going to take in this course, I will again limit myself to step index fiber and that to only

two layer fiber; so which has only two regions. So, n r is equal to n 1 when r is less than

a, and it is n 2 when r is greater than a. So, this is the core, this is the cladding: core has

refractive index n 1 and radius a. And this is infinitely extended cladding, ok. So, this is

the r equation and this is n of r.

The procedure to solve this  equation is exactly  the same as we have been doing for

planar waveguides. What we will have to do? I will have to write this equation in this



region, in the core, and in the cladding. So, in the core which is defined by the region r

less than a this equation becomes this. And for r greater than a which is the cladding

region the equation becomes this.
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We should pay attention again that for guided modes our beta over k naught should lie

between n 2 and n 1. So, beta lies between k naught n 2 and k naught n 1.

So, that is how I have arranged the terms here in order to have this quantity positive. So,

I have plus sign here and k naught square n 1 square minus beta square, and a negative

sign here and beta square minus k naught square n 2 square here. So now, I have these

two equations which I have to solve to find out the values of beta for any given value of

l: l can be 0 1 2 3 and so on.

So, let me define this k naught square n minus square minus beta square as some U

square over a square and this as some W square over a square.
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 So, these equations now become r square d 2 R over dr square plus r dR over dr plus U

square r square over a square minus l square times R is equal to 0 in the core. And in the

cladding r square d 2 R over dr square plus r dR over dr minus W square r square over a

square p l square times R is equal to 0. So, now I have these two equations, I have to

solve them.

If I have a little background of mathematical physics then I can immediately see that

these are Bessel’s equations and solutions of these equations are Bessel functions. So,

where U square is this and W square this. So, I am going to get the solutions of these, but

before that I observe the fact that if I do U square plus W square then it becomes k

naught square a square times n 1 square minus n 2 square. And by this time I am able to

recognise this kind of term very well, this is nothing but the normalised frequency V. So,

this is V square.

So, in case of optical fiber I have v is equal to 2 pi over lambda naught times a is the

radius which is half the diameter times n 1 square minus n 2 squares square root. This is

normalised frequency. And again it contains all the fiber parameters and the wavelength.

Let us come back to the solutions of this.
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The solution of this equation is given by J l Ur over a; in terms of J l Ur over a and Y l Ur

over a which are Bessel functions. And of this equation K l Wr over a and I l Wr over a

which are modified Bessel functions, ok.

So, if you go back to your planar waveguides I had in the region mod x less than d by 2

where n x was n 1, I had the solutions cosine kappa x and sin kappa x. And in the region

mod x greater than d by 2 where n x was n 2. And of course, n 1 was greater than n 2. I

had solutions in the form e to the power minus gamma x and e to the power plus gamma

x.

So, I had oscillatory solutions in mod x less than d by 2 and exponential  amplifying

decaying solutions in this. Here instead of sin cosine I have some J l Y l, instead of e to

the power minus gamma x and e to the power plus gamma x I have some K l I l. So, what

these solutions are, what these functions are, and how do I understand them and then

how do I proceed further I will see in the next lecture.

Thank you.


