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Lecture - 18
Electromagnetic Analysis of Waveguides- VIII

In the last lecture we had carried out the analysis of asymmetric planar waveguide for

TE-modes. In this lecture we will look into the TM-modes of the waveguide.

(Refer Slide Time: 00:33)

So this  is  the waveguide again,  and we will  confine our analysis  only to step index

waveguides. So, this is the step index asymmetric planar waveguide.
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So, for TM-modes the non-vanishing components of electric and magnetic fields for this

refractive index profile and z propagation are H y, E x and E z.

Again for guided modes the beta over k naught should lie between n s and n f, and if the

beta over k naught is below n s then field radiates out. So, they are radiation mode. So, I

again write down the wave equation in three different regions: the cover, the film, and

the substrate. And now the equations are in the form d 2 H y over dx square minus beta

square minus k naught square n c square H y is equal to 0 for the cover. And similarly in

the film this is the equation, and in the substrate this is the equation.

What I see that these equations are exactly the same. These equations are exactly the

same in TE case these equations were in E y and now these equations are in H y. Again

the definitions of gamma c kappa f and gamma s are the same.
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And if I write the solutions the solutions in the cover region is H y of x is equal to A E to

the power minus gamma c x. In the film it is B E to the power i kappa f x plus C E to the

power minus i kappa f x. In the substrate it  is D E to the power gamma s x, where

gamma c kappa f and gamma s are defined by these expressions.

Again I will have to apply the boundary conditions at the interfaces x is equal to 0 and x

is equal to minus d; to obtain the relationships between A B C and D, and to obtain the

eigenvalue equation.
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So, if I do this I again write down the solutions in different regions. And now apply the

boundary  conditions,  remember  again  the  boundary  conditions  are  the  tangential

components of E and H are continuous. So, these boundary conditions now become H y

and 1 over n square d H y over dx are continuous at the interfaces x is equal to 0 and at x

is equal to minus d

So, when I now apply these boundary conditions to these fields and do mathematical

manipulations similar to what we had done in the case of TE-modes I get the eigenvalue

equation as this. The only difference is now these factors of n f square over n s square

associated with the substrate term, n f square over n c square associated with the cover

term. So, these extra factors are there otherwise the equation is similar.

So,  this  is  the  eigenvalue  equation,  after  solving  this  I  can  find  out  the  modes,  the

propagation constants of the modes and later on the fields.
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In normalized parameters if I define this equation then it becomes tan 2 V square of 1

minus b n f square over n s square square root of b divided by 1 minus b plus n f square

over n c square square root of b plus a over 1 minus b divided by 1 minus n f square over

n s square times square root of b over 1 minus b and n f square over n c square times

square root of b plus a over 1 minus b.



What are the cut offs? The cut offs are again defined by b is equal to 0. So, if I put b is

equal to 0 here the equation define the cut offs for TM-modes are now tan 2 V c is equal

to n f square over n c square times square root of a. So, if I compare it with the cut offs of

TE-modes then I have this extra factor of n f square over n c square here. So, my cut offs

for m-th TM-modes are now given by m pi by 2 plus half tan inverse of n f square over n

c square square root of a.

I can see from here that since n f is larger than n c then these cut offs of TM-modes are

larger than the cut offs of corresponding TE-modes.
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So, let me now plot b V curves here by solving the transcendental equation for different

values of V and for the given value of a.

So here, I have plotted for two cases: one is for symmetric waveguide and another is for

asymmetric waveguide. For comparison I have also plotted the b V curves for TE-modes.

So, the b V curves for TE-modes are given by solid line, for TM-modes they are given by

dashed line. If I look at these curves now, for a is equal to 0 this is TE 0 mode, this is TM

0 mode. Solid line is TE 0 mode dashed line is TM 0 mode, and I see that both the modes

have the same cut off.

But if I take a naught equal to 0 that is I consider the case of asymmetric waveguide then

the TE 0 mode has cut off somewhere here, and TM 0 mode has cut off somewhere here.



And I can see that in this range, so this cut off point is defined by half tan inverse of

square root a and this cut off point is defined by half tan inverse n f square over n c

square square root of a.

So, in this region if the value of V lies in this region then only TE 0 mode is guided and

all the other modes included in TM 0 are cut off. So, in this range I guide strictly one

mode and that mode is TE 0 mode. Or rigorously speaking in this range I guide only one

mode and one polarization  only TE polarization.  So, this  range is  also called  SPSM

range- Single Polarization Single Mode range.

Let us look at the modal fields.
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Modal fields are similar but there is one difference we should mark, and that difference is

discontinuity at on the slope at the interfaces. Because H y is continuous so there is no

discontinuity in the field, but d H y over dx is not continuous at the interface. So, there is

discontinuity in the slope at the interfaces.

The number of modes: how many modes are guided? Well, now all the modes are shifted

by this much amount half tan inverse of n f square over n c square square root of a. So,

the number of modes would now be an integer closest to but greater than this number.

Let us look at  how the number of TM-modes vary when we change wavelength and

compare it with the TE case also.
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So, here I have plotted the number of modes as a function of wavelength, ok. If I find out

the cut off wavelength of TE 0 mode then for these waveguide parameters, then it comes

out  to be 1.7187 micrometre.  If  I  now find out  the cut  off  wavelength  for the same

waveguide for TM 0 mode then it comes out to be 1.5916. So now, if I again start from a

wavelength two micron and start decreasing the wavelength, then as I cross 1.7187 as I

cross 1.7187 TE 0 mode starts appearing this blue one; TE 0 mode starts appearing but

TM  0  is  still  not  there.  And  as  soon  as  I  go  below  1.5916  then  TM  0  also  starts

appearing.

So, in this range only T 0 mode is there and this is SPSM range, while if I go below this

value then I have both TE 0 and TM 0. Similarly if I go below this then TM 1 will also

start appearing. So, this is the range of wavelength 1.5916 to 1.7187, in this wavelength

range I have single polarization single mode operation of the waveguide.

Let us workout few examples here.
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Let me consider a dielectric asymmetric planar waveguide with n f is equal to1.5 and n s

is equal to 1.48 and n c is equal to 1.

Now, I want to calculate the range of normalized frequency for SPSM operation. So, I

know that SPSM operation involves asymmetry parameter a, so first I calculate a for this

waveguide  and a  comes out  to  be about  20.  Then SPSM range is  given by half  tan

inverse square root a smaller than V smaller than half tan inverse n f square over n c

square square root of a. So now, if I calculate these then this range comes out to be

0.6753 less than V less than 0.7358. So, this is the range of normalized frequency V for

SPSM operation.
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And remember that the definition of v which I have used is 2 pi over lambda naught

times d by 2 times square root of n f square minus n s square. And I would like to bring

out that in the text books in several textbooks the definition of V is 2 pi over lambda

naught times d times n f square minus n s square, while I use d by 2. So, there would be a

factor of 2.

(Refer Slide Time: 12:55)

Second  is  for  d  is  equal  to  1  micrometre  what  is  the  wavelength  range  for  SPSM

operation? So, I know that from the previous problem I know that V should lie between



0.6753  to  0.7358 for  SPSM operation.  Now for  this  range  of  V I  can  find  out  the

corresponding range of lambda if d is given. So, lambda in terms of V and d and n f n s is

given by 2 pi over V d by 2 square root of n f square minus m c square. So, I simply find

out the value of lambda naught corresponding to these values of V.

So, it comes out to be lambda line between 1.042 micrometre and 1.136 micrometer.
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Third is if I choose a light source of wavelength lambda naught is equal to 1 micrometre

then in what range of film thickness there would be SPSM operation. So, again I have

the SPSM range of V from 0.6753 to 0.7358 and I simply now find out the corresponding

values of d if lambda naught is given to me.

So, this comes out to be between 0.88 micrometre and 0.96 micrometre. So, in this range

in this very small range of d I will have SPSM operation.
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How much is the power associated with the modes. So, to find out the power associated

with the mode I will have to calculate the pointing vector and then integrate it over the

entire  cross  section.  Since  it  is  a  planar  waveguide,  so  I  cannot  integrate  it  over  y,

because in y direction it is infinitely extended. So, what I can have is power per unit

length in y direction.

So, for TE-mode I have already seen in case of symmetric waveguides that P is given by

beta over 2 omega mu naught times integral minus infinity to plus infinity E y square of

x dx. So, if I now find out the integration E y square of x dx for the modes; for the modal

fields  of  asymmetric  planar  waveguide  for  TE-mode  then  I  can  find  out  the  power

associated with TE-modes and it is given by this. 

Similarly for TM-modes the power per unit length is given by beta over 2 omega epsilon

naught integral minus infinity to plus infinity 1 over n square H y square x dx. And if I

do the same then the power corresponding to TM-modes comes out to be like this.
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The last thing that I would like to do in this lecture is- how do I excite a particular mode.

Can I excite a particular mode? Selectively excite; I know if I have waveguide and if I

launched the light from end then all the modes would be excited in different proportion

depending upon what  is  the  intensity  profile  or  what  is  the  amplitude  profile  of  the

incident light.

But, can I selectively excite one particular mode? So for what is used is prism coupling

technique.  So,  what  you  do?  You  have  a  waveguide  this  is  an  asymmetric  planar

waveguide whose cover is air.  So, this can be glass and this can be polymer film for

example, and this is air. Now what I do I put a prism on top of this and press it, clamp it,

then what I have here even though it is pressed hard there is some air gap between the

prism and the film. And what happens is now I launched light from here into the prism,

this light beam gets reflected into the prism.

And then depending upon this angle psi which can be translated, which can be related to

this angle theta P with this beam makes with the normal to the prism base then depending

upon this angle theta P this would get totally internally reflected. So, I can have total

internal  reflection  at  the prism base.  I  know that  a total  internal  reflection  is  always

associated with an evanescent tail. So, here what basically I have a standing wave here

whose tail evanescent tail extends into the film.



So, I have a standing wave here whose evanescent tail extends into the field and it is this

evanescent field which excites the mode of the waveguide. So, this is the standing wave.

And this is one typical guided mode. This is you can see that it is TE 0 mode if launched

polarization is TE. This guided mode is nothing but a superposition of two plane waves

and these plane waves make angle plus minus theta f from the waveguide axis. So, if this

angle is theta ft then the propagation constant of this plane wave is k naught n f, then the

propagation constant of the mode is k naught n f cos theta f.

So, propagation constant of the mode is k naught n f cos theta f, which is the horizontal

component  of  this.  While  if  I  look  at  this  standing  wave  pattern  then,  what  is  the

horizontal component of this plane wave. The horizontal component of this plane wave is

k naught n P sin theta p. So, if the horizontal component of this standing wave is the

same as the horizontal component of this guided mode then well horizontal component

of the plane wave corresponding to guided board then there would be phase matching,

because these two horizontal components are now able to catch up each other. And that is

how this would be able to resonantly couple energy into this mode.

So, if this condition is satisfied I have excitation of that particular guided mode which

corresponds to a particular angle theta f. And I know that this k naught n f cos theta f is

nothing but k naught n effective. So, from here I can even find out the effective index of

the mode if I know angle psi. How I have got this? Well, this angle psi can be related to

this theta P. If I look at this triangle then A plus pi by 2 plus r where r is the angle of

reflection plus pi by 2 minus theta P should be equal to pi. Or I get r in terms of psi from

a Snell’s law sin psi is equal to n P sin r and if I put it here then I get theta P is equal to a

plus sin inverse sin psi over n P.

And this gives me n effective in terms of the incident angle, the prism refractive index,

prism angle A, and again prism reflective index. So, if I know this then by just measuring

these  psi  I  can  find  out  the  effective  index of  the mode.  And you can see that  this

resonant excitation can take place when this condition is satisfied and theta f is discrete;

theta f is discrete for different modes. For t 0 mode it is different for TE 1 mode it is

different for TE 2 mode it is different.



So, for different values of psi I will have different values of theta P. And if they match to

these discrete theta f then I will excite those particular modes. So, in this way I can

selectively excite, I can selectively excite the modes of a planar waveguide.
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This is the experimental setup. So, you have a laser beam and this is a lens through

which  you  focus  this  onto  the  prism coupling  arrangement.  This  is  a  typical  prism

coupling arrangement, this is the waveguide, and this is the prism. And you can see that

when I tune because this assembly can be rotated with respect to the beam, so I can

change the angle psi. And I can see that for a particular value of psi the other input angle

I see a mode is excited and I see a streak going down the length of the waveguide.

So,  this  represents  the propagation  of  mode.  And I  can see that  as it  goes  then this

becomes feeble and feeble it becomes week because of the losses. And in fact, you can

see this because there are scattering losses. There are scattering losses that is how you

can see. So, more strong the streak is bad is the quality of the waveguide. I can also do, I

can put another prism here and I can de couple the modes in the same way as I have

coupled them. So, I put another prism here.

So, you can see that from this  side I am coupling light this  is the streak and then I

decouple, then I decouple and when I put it here on the screen then I see these lines

which correspond to the modes different modes. For example, in this I can see 1, 2, 3, 4,

5, 6 modes,  and by changing the angle I can put light into one particular  mode. For



example, here it is coupled to third mode from the left. These are known as m lines. So,

by measuring angles psi I can find out the effective index of the mode n effective. And

once I have the values of n effective then using a technique called inverse WKB method

I can do the refractive index profiling of the waveguide.

So, by measuring the refractive indices of the modes I can find out the refractive index

profile  of the waveguide.  The only thing is  that I  should have sufficient  values of n

effective, I should have sufficient values of n effective. For a single mode waveguide it

would not work, if you have only one value of n effective it will not work. So, if it is a

single mode waveguide at one particular wavelength then it will not work, you will have

to use different wavelengths to have the values of n effective at different wavelengths

and then you can  do it;  otherwise,  at  a  single  wavelength  if  it  is  highly  multimode

waveguide then it is more accurate.

So, this is all in planar waveguides. And in the next lecture we will go into cylindrical

geometry and find out how the modes are formed in an optical fiber, and how do we

analyze the modes of an optical fiber, how do we find out the modes of an optical fiber. I

have spent a lot of time in the analysis of planar waveguide. And in the optical fiber I

would adopt all these results to cylindrical geometry, because the physics is now clear.

And  it  was  easier  to  understand  all  these  in  planar  geometry,  because  it  was  one

dimensional  problem.  And also  the  functions  involved  were  very  simple:  sin  cosine

functions  and  exponentially  amplifying  and  decaying  functions.  But  in  case  of

cylindrical geometry these functions would be different. However, the physics which we

have understood from the analysis of planar waveguide would be applicable there also.

Thank you.


