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So far what we discussed was what will happen if we perform a measurement on an 

ensemble of single photons. We need many, many single photons. They were in an 

unknown polarization state and we wanted to estimate the state of that polarization. So, 

we're using it in experiment, but we were assuming that all the photons are in the same 

state psi. What will happen if some of the photons are in state psi 1 and some other 

photons are in the state psi 2. So, the setup is such that we have stream of single photons 

coming, and with n1 of those photons out of total N, N1 of them are in state psi 1 and 

nN2 are in state psi 2. 
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So, it is the N1 plus N2 equals N. This is the scenario we have here that out of total N, N1 

photons are in state psi 1 and N2 photons are in state psi 2 or we can say that psi 1, 

photon can be found in the state psi 1 with probability s1, which is given by N1 over N, 

and probability s2 is for the photon to be found in the state psi 2. Now, if that is the case, 

then what can we say about the expectation value of an observable. And now our task is 

to find the expectation value of an observable. a1 and a2 are the eigenvectors of it. 

So, ultimately, we want to find expectation value of A. Since we do not know what is s1, 

what is s2, whether the photons are in psi 1 or psi 2 or it is only one psi, it can be 



anything. So, without having any information about what is the situation of the incoming 

ensemble, incoming photon, we have to find the expectation value of A. And of course, 

the experimental setup should not care about the configuration in which we have 

prepared the photons, the set of photons. So, the expectation value of A, let us recall is 

given by sum over i, ai and pi, where pi is the probability of getting the outcome ai and it 

is calculated if the quantum system is in the state psi, then this is the probability of 

getting ai and this is called Born rule of probability. This is the axiom of quantum 

mechanics. Whatever we want to do, we have to use this. But the quantum mechanics 

never told us what will happen if we have more than one state. We cannot say that we can 

take the average state of it. 

So, we call the state of the photon to be root of s1 psi 1, plus root of s2 psi 2. We cannot 

say that. Or even if we can say it, we have to prove it that this actually is the state. We are 

not assuming psi 1 and psi 2 are orthogonal. They need not be. They can be any arbitrary 

state as long as they are measured state it means they are normalized, okay and they 

belong to the Hilbert space of the interest. So, let us, the assumption we are making is a 

given photon is either in the state psi 1 or in the straight psi 2, so in the setup whenever 

one photon comes, then we get p1 probability which is psi 1 a1 mod square, the click will 

happen in a1 with probability p1 and click will happen with p2, with probability p2 in a2 

in this. This is the born rule we are using, nothing else. And if the photon is in the state 

psi 2, then we get q1, which is psi 2 a1 mod square and q2, which is psi 2 a2 mod square. 

So, if psi1 comes, then the probabilities are p1 p2. If psi2 comes, then the probabilities 

are q1 q2. And since it's just a click, for every photon we will get just a click, either it 

will click here or here. 
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We do not know whether it was because of the probability p1 or q1 or it was because of 

the probability p2 or q2. From single click, we will never know. But with statistics also, 

probably we can find out, but we will see that. So, our photons are coming in states psi 1 



and psi 2 and we get this probability. The probability of psi 1 coming is s1 and 

probability of psi 2 coming is s2. 
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So, if the photon was in the state psi 1, then the expectation value, let us call it 

expectation psi 1, will be p1 a1 plus a2 p2. The expectation value when the photon was in 

psi 2 is a1q1 plus a2q2. And since we are repeating this experiment over many, many 

photons, very, very large number of photons, so the total expectation value will be s1 

times the expectation value of A with psi 1 plus s2, the expectation value of A with psi 2. 

So, this is the expectation value we will get when we have an ensemble of photons in 

different states. Here we are taking simple case of psi 1, psi 2. 

We can generalize to larger number also. So, in general, it will be A to be sum over i, si, 

A, psi i. The psi i's are the state in which the photons are prepared. They need not be 

orthogonal. They should be just valid states of photons, in anything, like we discussed the 

case of polarization. So, they can be polarization state of a single photon. 
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So, this is the most general expectation value of an observable for an arbitrary mixture of 

state. And you see, this is the first time we are seeing something beyond just psi. Now we 

have two psi's in the same ensemble. And we will reveal something very beautiful soon. 



Now, let us write, we take a simple case of two, then we have a s1 A psi 1 plus s2 A psi 

2. 

And that we can write as a1 psi 1 A psi 1 plus s2 psi 2 A psi 2. What is the significance of 

this statement, this equation? The significance is, let us say there exists a state phi such 

that the expectation value of A can be written in this form. Let us say, it means we can 

choose phi to be s1, psi 1 plus root s2, psi 2. This does not mean, let us say it can be 

chosen this way, what will happen when we calculate phi A phi then we get s 1 psi 1 A 

psi 1 plus s 2 psi 2 A psi 2 plus root s 1 s 2 psi 1 A psi 2 plus psi2 A psi 1. 
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Now, if we compare this with expectation value of A, we see that these two terms are 

extra. They are not present in the original expression for expectation value of A. So, it 

means this choice of phi is not correct. Maybe we forgot, maybe instead of plus it should 

be minus sign or some other phase. So, we can choose phi, we can try with phi as a phase 

exponential of i gamma psi 2. And gamma is the relative phase between psi 1 and psi 2. 

Again, if we calculate the expectation value of A with this new phi, we get s1 s2 plus root 

s1 s2. Even now, these terms are extra. These two terms are correct, but these two terms 

are not. They should not be present. But what does it mean? 
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It means there does not exist any phi of this form which can yield the right expectation 

value for the scenario under consideration. Namely, we have a mixture of two pure states, 

psi 1 and psi 2, and we want to see what is the expectation value and we want to see what 

is the corresponding average state. But we can see one thing that if we average this 

expectation value over the whole range of gamma, then we get actually the right 

expectation value it means the two terms this and this disappear when we average over 

gamma. So, it means the state phi which is root s1 psi 1 plus exponential of i gamma, root 

s2 psi 2 for all gamma uniformly distributed, this is a valid state. 
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A valid representation for the scenario we have considered. So, it means what we are 

saying is that this gamma is completely random. We do not know what this is for any 

photon. That's why we have to take average. We have to average over all the gammas and 

that's how we can discard these two terms. So, we can say the phi for all gammas 

between 0 and 2 pi is the right representation for the ensemble of photons we have 

considered. 

This is one way of saying it. We can also say that instead of working with pure states phi, 

we can develop another mathematical structure rho, as s1, psi1, psi1 plus s2, psi2, psi2. 

That is a statistical mixture of the two pure states. This is one state and the probability 

corresponding to it. This is another state and the probability corresponding to it. 
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Now, the expectation value of A can be written as trace of A times rho, which will be s1 

psi 1 A psi 1 plus s2 psi 2 A psi 2. This will give us the right expectation value for any 

arbitrary observable, okay. So, this operator is called the density operator and this is the 

more general way of representing a state of the quantum system. Here we are saying rho 

when we are writing it in this form sum over i, si, psi i, psi i. This is a mixture, a classical 

mixture of pure states or of quantum states psi i with probabilities si. This is called a 

mixed state. So, a very extreme example of a mixed state is a pure state, namely s1 is 1 

and all the other si not equal to 1 is 0. So, in that case, our rho will be psi 1 psi 1 or any 

psi i, psi i, just that they know sum only one term. 

(Refer slide time: 13:36) 

 

 

So, this is, here we are saying that all the quantum systems in the ensemble are in the 

same state. So, this is what we call pure state. So, if we don't have any summation here, 

then it's a pure state. If we have a summation, then it's a mixed state. So, in that way, this 

mathematical structure captures whatever have been discussed so far in terms of psi and 

beyond that. 

Beyond that means these probabilities also it can handle and these are the classical 

probabilities. So, we have classical mixture and hence we have mixed state. So, what are 

the general properties of density operators. The more general density operator can be 

written as p i, psi i, psi i, where pi's are either 0 or closed numbers, sum over i p i is 1. So, 

set of pi's form a valid probability distribution. 



Psi's are normalized states. Those are the only requirements we have for a density 

operator. So, that the pi should be positive and they should add up to 1 and psi i should be 

normalized. Psi i need not be orthogonal to each other, but they must be normalized. Now 

from here we can see that what is rho dagger. 
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p i's are real, so p i remain p i, psi i psi i outer product will be, the dagger of it will be the 

same thing this is same as rho this implies that rho is Hermitian, so rho must be 

Hermitian now trace of rho will be sum over i p i trace of psi i psi i, you can check will 

be p i psi i psi i since psi is normalized we are left with sum over p i which is equal to 

one, this implies that trace of rho is one. So, rho should be Hermitian. rho should have 

trace 1. These are the two properties. 
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And third and foremost property is that rho, since it is Hermitian, so the eigenvalues of 

rho, let us call them lambda 1, lambda 2 and many, but for qubits only 2, lambda 1 and 

lambda 2. They should all be always be either positive or zero, so how we can say that 

since rho is Hermitian, we can always write a spectral decomposition for it, lambda i i, 

spectral decomposition. So, this is also a decomposition of rho in this form just that here 

accidentally psi i's are nothing but i's and they are orthonormal so if this this is the density 

matrix then lambda i must be positive and trace, the sum over lambda i's should be 1. It 

means lambda i's have to be positive semi-definite. Hence, and we know the property that 

Hermitian operator with positive semi-definite eigenvalues are positive semi-definite 

operators. 
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So, rho must be a positive semi-definite operator. The three properties we can summarize 

as rho is Hermitian, trace of rho is one and rho is positive. So, what we are seeing is if 

rho is written in this form, then it satisfies all these three properties not just that we are 

seeing the reverse also if against, if a matrix satisfy these three properties they are a valid 

state for a quantum system. So, any matrix which satisfies these three properties can be a 

bonafide state. How to prepare it and what to do with that is a secondary question, but 

that can be in principle a valid state for a quantum system. 
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Now, rank of a matrix is the number of non-zero eigenvalues of the matrix. So, if rank of 

rho is 1, then it means it's a pure state. Pure state again let me reiterate pure state means it 

depends only on one psi, okay. So, this is equivalent to psi of course not mathematically 

but like the information in psi is same as the information in this rho. If the rank is not one 

then it's a mixed state. Now, since rho is Hermitian, we can write it in a very interesting 

way. First, let us say rho has an arbitrary form a, b, c, d and rho dagger becomes a star, a 

star, b star and d star. 
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If rho equals rho dagger, this implies that A and D are real and B equals B star. It is a 

complex conjugate of each other. So, we can write rho as a, b, b star, d. Another thing is 

trace of rho is 1. This implies that a plus d equals 1. So, we can write rho as half times 

identity plus rx sigma x plus ry sigma y plus rz sigma z, how we can write this thing 

because first of all we notice that since the rho is a two by two Hermitian operator it can 

be decomposed as a sum of identity sigma x sigma y and sigma z because they form a 

basis for the Hermitian vector space. So, rx, ry, rz and the coefficient of identity should 

be, are yet to be found. 
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But since sigma x, sigma y and sigma z are traceless matrices, trace of sigma i is 0 for all 

i 1, 2, 3. So, the only matrix with non-square trace is the identity. So, the trace of identity 

is 2. So, the coefficient of this should be half. So, there is a half factor outside. 
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And other than that, there is no restriction over rx, ry and rz, just that they should be real. 

So, we can write rho in this form and it will satisfy the two conditions that its Hermitian 

and in that trace of rho is 1. Now, the next task is to find the eigenvalues of rho. And it 



turns out that it will be rx square plus ry square plus rz square square root over 2. So, 

there are two value values, one smaller, one larger. 
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So, and they both should be positive. So, the smaller one is more likely to be negative 

than the bigger one. So, the smaller one is rx square plus ry square plus rz square over 2 

should be a positive number. If we say r vector, if we define a r vector, which is a three-

dimensional real vector, r x, r y, r z, then r vector mod will be square root of r x square 

plus r y square plus r z square. So, this becomes 1 minus r vector mod over 2 and from 

here we can say r vector mod should always be less than or equal to 1. 

So, the positivity condition over the rho says that the r vector we have here in this 

decomposition, that should have magnitudes smaller than 1. So, this decomposition with 

the additional condition that r vector mod less than 1, less than or equal to 1, this is called 

block representation. Block representation or block decomposition of a qubit. Now, we 

see that r vector mod is less than or equal to 1. What will happen when r vector mod is 

equal to 1? 

Then the eigenvalues of rho will become 1 plus minus 1 over 2 which is 1 and 0. Then 

the rank of the matrix is 1, hence pure state. So, till now we have seen mathematically 

how r looks like and how the density matrix can be represented and how density matrix 

rho is the more generalized form of representing the quantum state. But what is the 

physical significance of r, the rx, ry, rz? It turns out that the expectation value of sigma x 

is rx, sigma y is ry and sigma z is rz. 

And this is a good exercise to establish this thing. Prove that expectation value of sigma 

x, sigma y, sigma z is rx, ry, rz, let me give you a hint that the expectation value of an 

observable is trace of A times pho. So, what we are seeing is the only quantities which 

we can measure in a lab namely sigma x, sigma y, sigma z or we should measure that has 



all the information, they are the direct coefficients of the density matrix rho in terms of 

rx, ry, rz. So, once we have rx, ry, rz and we plug it into the block decomposition, we get 

a 2 by 2 Hermitian matrix. 
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We find the eigenvalues of it and if the eigenvalue turns out to be 1 and 0, then we know 

that this rx, ry, rz correspond to the pure state, a pure state. And the eigenvector of rho 

corresponding to the eigenvalue 1 will be the pure state. So, in that way, this density 

operator representation of a state is more general and more useful way of writing the 

general states. So, if we are given an observable A with eigenvalues ai and eigenvectors 

ai and the state is given in the form of rho, then what is the probability of getting ai 

outcome? We know, we recall that for a pure state, the probability is given by the born 

rule, psi ai mod square. 
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For a mixed state, where mixed state is given by sum over i, pi, psi i over psi i, it will be 

given by psi i, pi, sum over i, this factor. okay, so, we are assuming for each pure state we 

have probability psi i a let me say j not i we have different symbols psi j a i mod square 

and that state itself appear with probability pi, so the probability multiplies and we get the 

probability, the average probability of getting the output ai. This is the more generalized 

born rule of probability in terms of density matrix. But this is not very useful because we 

need to find the p i s and psi i s. So, we can expand it to make it simpler p j. We can say 

psi j a i and a i psi j which is ai sum over j pj psi j psi j ai and this is our rho. So, the 



probability of getting the outcome ai is actually the expectation value of rho in terms of ai 

This expression is interesting and I find it personally very interesting that here the role of 

the state and the quantity related to the observable have changed. 
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Till now we were saying that the expectation value of some observable is the expectation 

value of the observable of course the A sandwiched between the states psi, here we are 

saying rho is sandwiched between the eigen states eigenvectors a i okay, so we have 

flipped the role of observable and states although this statement has no material gain or 

any anything. But this is an interesting statement that here we have changed the role. 

Much later in this course, we will come to a duality in which we will show that a state of 

a quantum system can be thought of mathematically serve the operation on some other 

quantum system. Maybe these things are related and it should not come as a shock later 

on because we have seen something similar happening here. Okay but this was the new 

born rule of probability, the second part of the measurement postulate is the collapse, so 

what happens when we get the state a i, what happened to the state rho then rho goes to 

rho i which is given by a i outer product a i, rho a i outer product a i over p of a i now we 

see that this is just p of ai and we are left with ai ai over p we can cancel these and we are 

left with only ai ai. 
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So, after the projection, the state rho collapses to pure state ai. And this is the original 

collapsible postulate in quantum mechanics. Then after measurement, the state collapses 

to the eigenstate of the observable. 

 


