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Qubits: State Tomography 

 

In today's lecture we will be discussing about the quantum state estimation we are still in 

the qubit subspace so we will start with a state of a qubit and we will see how to estimate 

a state of this qubit.  So, mathematically we know a state of a qubit |Ψ⟩, the canonical 

representation we wrote last time which was cos(ɵ/2) and sin(ɵ/2)𝑒𝑖ϕ. That's the most 

general representation for a state of a qubit |Ψ⟩ where ɵ is between 0 and π and ϕ is 

between 0 and 2π. This is just to remove the degeneracy that we know two values of ɵ 

and ϕ should not result in the same state |Ψ⟩. That's why this restriction is there. 
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There will be evident or this will be clear later on when we discuss more about this state 

representation in the geometric form and in other forms it will be clearer why we are 

taking it in this restricted sub space.  But this is also easy to find when we allow the full 

range of ɵ and full range of ϕ from 0 to 2π for both, then there will be two values of ɵ 

which will give us the same state so we don't want that because of our order phase. So, 

we start with this thing and now we see mathematically or the first postulate of quantum 

mechanics tells us that a state of a quantum system, mathematical structures, state of a 

quantum system should contain every possible measurable quantity in that. Okay, or we 

can say whatever we can measure in the lab it should be contained in this state |Ψ⟩ or any 

representation of state we want to use, okay. So, we can also say that somehow if 

somehow, we can find the expectation value of all the observables, this set of the 

expectation values of all the possible observables of a qubit, then this stat should also be 



a valid representation for a state. Of course, you say it's infinite information because there 

are infinitely many observables. 

So, it's the overkill. we have too much information we don't need so much information to 

represent a state this is actually neater way of writing it but this is also not wrong if it is 

possible to write. An observable is a Hermitian operator so we can write it as ∑ 𝑎𝜇𝜎𝜇
3
𝜇=0 .  

where 𝜎0 is identity, 𝜎1 is 𝜎𝑥, 𝜎2 is 𝜎𝑦, 𝜎3 is 𝜎𝑧 and 𝑎𝜇 are real numbers for all the 𝜇's. So, 

this is the more general representation of a Hermitian operator.  We have discussed it 

earlier since expectation value is a linear operation. So, it will be, we can write it as 

∑ 𝑎𝜇⟨Ψ|𝜎𝜇|Ψ⟩3
𝜇=0 . So, we are getting 𝑎𝜇 and expectation value of 𝜎𝜇. Expectation value 

of 𝜎0, that is identity is just one because our state is normalized. 
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Okay, so, it means we are left with the expectation value of A which depends on 𝜎𝑥 

expectation value, 𝜎𝑦 expectation value and 𝜎𝑧 expectation value, this set and of course 

it's eigenvectors or the 𝑎𝜇, the coefficients of decomposition. So, it means the set of all 

the expectation values is not an independent set. They depend heavily and they depend 

only on these three expectation values. These are the quantities which we will get from 

the experiment and a mu are the quantity in defining the observable A itself. So, they are 

not the part of the experiment. 

The experimental part comes in the expectation value. So, this set, we can find the 

minimum set which has the most information. That set will be just the expectation value, 

𝜎𝑥 , 𝜎𝑦  and  𝜎𝑧 . So, in that way this set of three expectation value should have same 

amount of information as the state |Ψ⟩  which we are representing or any other 

representation we have for the state |Ψ⟩. Now, let me repeat again. The first postulate 



says that the state of the quantum system contains all the measurable quantity or 

measurable information in that mathematical structure. 

We are just twisting this postulate around and saying that, if we have somehow all the 

measurable information which we can measure in the lab, all the measurable information 

if we have in some mathematical form, that should be equivalent to the state |Ψ⟩. So, it 

means and we have reduced that whole information which is measurable in the lab to just 

three measurable quantities that is 𝜎𝑥  expectation value, 𝜎𝑦  expectation value and 𝜎𝑧 

expectation value. So, these three real numbers should be equivalent to the state |Ψ⟩. 

There should be a one-to-one relation between these measurable quantities in the lab and 

this state |Ψ⟩. 

Why is it so? Because this is all we can measure for a given quantum system. These three 

things. We can measure more but they are dependent on these three. Now, we have to 

find that, given a state |Ψ⟩, again the state |Ψ⟩ is given in this form cos(ɵ/2), sin(ɵ/2)𝑒𝑖ϕ, 

when we perform measurement and we get 𝜎𝑥  which will be sin(ɵ)cos(ϕ), 𝜎𝑦  will be 

sin(ɵ)sin(ϕ) and 𝜎𝑧 will be cos(ɵ). 
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So, these three quantities at the state |Ψ⟩ have one to one correspondence and since ɵ is 

from 0 to π  so we can see that if we have cos(ɵ), it starts from 1, it goes to 0 at ɵ equals 

π/2 and it goes to -1 at ɵ equals π. So, there is no repetition in ɵ. So, from here, we can 

find the ɵ, which is cos inverse of 𝜎𝑧. This is unique once, we measure the 𝜎𝑧 expectation 

value so we can calculate the cos(ɵ) from there directly. Now from once we have ɵ, then 

we can substitute in sin(ɵ) and we are left with only ϕ which is unknown. Now ϕ has 

value from 0 to 2 π. Okay and cos(ɵ) and minus, cos(ϕ) and sin(ϕ) can take positive or 

negative value for all those things, but we can have tan of ϕ  which will be 𝜎𝑥  𝜎𝑦 

expectation value divided by 𝜎𝑥  expectation value, where can be the ambiguity now 

because, if we have four quadrants 1, 2, 3, 4, for the ϕ, it is 0 to pi by 2, pi by 2 to pi, pi 



to 3 pi by 2 and 3 pi by 2 to 2 pi. We have four quadrants. tan(ɵ) is positive here. It's 

negative here. It's positive here. It's negative here. 

So, if we have only the value of tan ϕ, then we do not know whether it belongs to even 

quadrants or odd quadrants. But we can see that sin(ɵ) and cos(ɵ) have different signs in 

all four quadrants. So, in that way, by looking at the sign of 𝜎𝑦 and 𝜎𝑧, 𝜎𝑥, and the ratio 

of these two, we can determine where will the tan(ϕ) belong. And accordingly, we can 

assign the value of ϕ. And hence, with these three quantities, we can find ɵ and ϕ. 
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And hence, we can get the state from this experimental data. Okay so in this way by 

performing measurements and with the measured quantities we can estimate the state 

|Ψ⟩, okay. So, one interesting thing i would like to make you see or it's a nice observation 

we have |Ψ⟩ which we are writing in cos(ɵ)sin(ɵ) ta form we can also write it as cos(ɵ/2), 

|0⟩ state and 𝑒𝑖ϕsin(ɵ/2), |1⟩ state. Where |0⟩  and |1⟩  are the eigenstate of 𝜎𝑧 such that 

|0⟩  belongs to the positive eigenstate, positive eigenvalue and |1⟩ belongs to negative 

eigenvalue. So, from here, if we see what is the 𝜎𝑥 expectation value, that will be the 

eigenvalue, which is 1 times the probability of |0⟩  plus the eigenvalue -1 times the 

probability of |1⟩. 
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This is the eigenvalue times the probability, eigenvalue times the probability and sum of 

all those. So, probability of |0⟩ is cos2(ɵ/2), and probability of |0⟩ is the mod square of 



this element which will be sin2(ɵ/2), and minus sign comes from the eigenvalue. This is 

cos(ɵ). This is what we saw earlier that the expectation value of 𝜎𝑧 is cos(ɵ). Now, this is 

simple, can we do the similar thing for the expectation value of 𝜎𝑥 and 𝜎𝑦. To do that, we 

need to find alpha and beta, okay. 

I am doing it for the 𝜎𝑥 expectation value now. 𝛼|+⟩ + 𝛽|−⟩, we are writing it where |+⟩ 

is the expectation value or the eigenstate of 𝜎𝑥  with plus eigenvalue and |−⟩  is the 

eigenvector of 𝜎𝑥 with minus eigenvalue. We can see that |+⟩ and |−⟩ can be represented 

in the |0⟩  and |1⟩  form. So, |±⟩ is actually (|0⟩ ± |1⟩)/√2 . We can also write |0⟩  as 

(|+⟩ + |−⟩)/√2  and |1⟩ = (|+⟩ − |−⟩)/√2 . So, we can do this thing and we can 

substitute it back in the earlier equation, cos(ɵ/2), we have |0⟩, we write it as (|+⟩ +

|−⟩)/√2, plus 𝑒𝑖ϕ sin(ɵ/2)(|+⟩ − |−⟩)/√2. Now we can gather the coefficient of |+⟩ 

and coefficient of |−⟩  separately, (1/√2 )(cos(ɵ/2) +𝑒𝑖ϕ sin(ɵ/2)) , these are the 

coefficient of |+⟩, (1/√2) (cos(ɵ/2)+𝑒𝑖ϕsin(ɵ/2) is the coefficient of |−⟩. 
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So, this is the decomposition. This is the representation of |Ψ⟩ in the |+⟩ and |−⟩, |±⟩  

basis, so here this is alpha what we were saying alpha and this is our beta. Once we have 

this it's straightforward to write the expectation value of 𝜎𝑥, which will be |α|2 − |β|2, 

which will be half, we just take here the mod square of this will be cos2(ɵ/2) plus 

sin2(ɵ/2) plus sin(ɵ/2)cos(ɵ/2) 𝑒𝑖ϕ plus sin(ɵ/2)cos(ɵ/2) 𝑒−𝑖ϕ, minus half and square of 

those, so we will get the same term here, plus same term minus same term minus same 

term okay, where the minus sign will come with just these two terms otherwise the 

magnitude is same. This is a negative sign when we add these cancels and they will be 

twice, so there is a half factor so we can cancel that so we are getting sin(ɵ/2)cos(ɵ/2) 

[𝑒𝑖ϕ + 𝑒−𝑖ϕ]. And that is nothing but sinɵ cosϕ. 
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You see, we can write the state in the basis of the observable we want to find the 

expectation for. And then the coefficient mod squared and the eigenvalue product of the 

coefficient mod squared and the eigenvalues will give us the expectation value very 

easily. Similarly, we can do for 𝜎𝑦. We can write it as |+y⟩, some coefficient 𝛾,  plus δ, 

|−y⟩ , where |±y⟩  are the eigenvectors of 𝜎𝑦 with corresponding to plus and minus 

eigenvalues. |±y⟩ written as (|0⟩ ± i|1⟩)/√2. 

We can write it as |0⟩ as (|+y⟩ + |−y⟩)/√2 and |0⟩ as (|+y⟩ − |−y⟩)/√2. We can again 

substitute it in |Ψ⟩ and we can write the |Ψ⟩ in the basis of 𝜎𝑦 and then |γ|2 − |δ|2 will be 

our expectation value and it will come out to be sinɵ sinϕ. So, if we have a possibility of 

converting the state in the eigen basis of the measured observable, then it will be very 

easy and very straightforward to calculate the expectation value of the observable. So, we 

will be using it in a very sophisticated way, in a very nice way when we do real state 

tomographies. So, I would like to give an example of a state tomography. 
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So, in this example, we are taking the polarization qubits. So, here we have single 

photons and they are in an unknown polarization state. So, the state of the photon is some 

alpha times horizontal polarization plus beta times vertical polarization. Where alpha and 

beta are complex number, the usual practice and h and v are the horizontal and vertical 

polarization. We can as usual write 𝑐𝑜𝑠(ɵ/2)|h⟩ + 𝑒𝑖ϕ𝑠𝑖𝑛(ɵ/2)|v⟩. Now our task is to 

design an experimental setup to find this alpha and beta or ɵ and ϕ. 
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In order to do so, what we do is first we choose the basis. Choice of basis. We say the 

|h⟩ and |v⟩ are the eigen basis of 𝜎𝑧. So, it means 𝜎𝑧 acting on |h⟩ will be |h⟩, horizontal 

polarization and 𝜎𝑧 acting on |v⟩  will be −|v⟩ . So, |h⟩  and |v⟩  are the positive and 

negative eigenvectors of the 𝜎𝑧. So, this is our choice of this. If that is the case, then the 

𝜎𝑥 eigenvector which were |+⟩ and |−⟩ will be (|ℎ⟩ ± |v⟩)/√2. Now, we know what is 

|h⟩ plus |v⟩ and what is |h⟩ minus |v⟩. |h⟩+|v⟩ and |h⟩-|v⟩ are the polarization vectors 

along 45 degree and 135 degree. 

So, or we call it diagonal and anti-diagonal polarization. This is still linear polarization, 

but making 45-degree angle with the horizontal polarization and 135-degree angle with 

the horizontal polarization. So, by choosing |h⟩ and |v⟩ as the eigenvectors of 𝜎𝑧, we go 

to the eigenvector of 𝜎𝑦. And similarly, eigenvector of 𝜎𝑦 will be |±y⟩, which is (|h⟩ +

i|v⟩)/√2. And they are nothing but right and left circular polarization. So, let me repeat. 
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We are choosing h and v as the eigenvectors of that will give us the diagonal and anti-

diagonal polarization states as the eigenvectors of 𝜎𝑥  and right and left circular 

polarization as the eigenvector of 𝜎𝑦 . Now, in the experiment, how do we find the 

expectation value? Our task is to find expectation value of 𝜎𝑥 , 𝜎𝑦  and 𝜎𝑧 . In an 

experiment, how will we do that? So, we basically sketch of the experimental setup will 

be a path in which single photons are coming one by one and an experimental box, 

experimental setup, which will give us two clicks, one corresponding to one eigenvector 



and other corresponding to the other eigenvector of a given observable. This 

experimental setup is designed for a given observable. And these observables for us are 

nothing but 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧. So, these states |1⟩ and |2⟩ will be correspondingly, |±⟩, or |h⟩ 

|v⟩. 

Those will be the eigenvectors. So let us do the simplest case first that is the 

𝜎𝑧 measurement. So, we all know what is a polarizing beam splitter. A polarizing beam 

splitter, just drawing it with a box with a diagonal line inside it. What it does, it's an 

optical element, optical gadget, such that if light comes in, the horizontal light will pass 

through, horizontally polarized and vertical light will be reflected. Horizontal will pass 

through and vertical will reflect. So, we can use this polarizing beam splitter. 
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To do our sigma-z measurement, we have a box, polarizing beam splitter. We send 

photons in state |Ψ⟩ and we put detectors here and here. Now, we send one by one N 

photons in and we get N horizontal number of photons here and Nv number of photon up 

there. Then the probability of horizontal polarization will be Nh, it will be not equal but 

almost, Nh/N and pv will be Nv/N. So now we have probability of zero state, probability 

of one state, then the expectation value of 𝜎𝑧 will be ph-pv. 

This is almost, this will be equal when N tending to infinity. So, in that way, we can 

calculate, we can experimentally measure the expectation value of 𝜎𝑧. This was the easier 

part. How do we perform measurement on 𝜎𝑥? How do we find the expectation value of 

𝜎𝑥? We can always say that we can find something similar to polarizing beam splitter 

which will separate diagonal and anti-diagonal states and then we find like we did for 𝜎𝑧, 

we can do for 𝜎𝑥 . That is possible but that will require probably some technological 



development, finding or developing the gadget which is similar to polarizing beam 

splitter. 
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But we can do the same thing by using some smarter ways. For example, we discussed 

that |Ψ⟩  we are writing as cos(ɵ/2) |h⟩ + 𝑒𝑖ϕ sin(ɵ/2) |v⟩ . We can also write it as 

((cos(ɵ/2)+𝑒𝑖ϕsin(ɵ/2))/√2)|D⟩, let me call it D, factor plus ((cos(ɵ/2)−sin(ɵ/2))/√2)|A⟩, 

anti-diagonal. So, we can write |Ψ⟩ in the diagonal and anti-diagonal basis. Till now we 

have not done anything. 
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Now, what we can do is we can apply a unitary operator U which can take |D⟩ and |D⟩ to 

|h⟩ and |v⟩, if that is possible then we can apply U on |Ψ⟩ and we get coefficient times 

|h⟩ plus other coefficient times |v⟩ instead of |D⟩ and |A⟩  and then we can apply the 

simple polarizing beam splitter, separate h and v and do what we did for 𝜎𝑧. So what is 

this unitary which we have to apply and does it not require any additional technological 

development? It turns out that for polarization, this unitary can be achieved by something 

called half-wave plate. So, we are not going into a detail of what is the half-wave plate, 

but the action of a half-wave plate, when it is rotated by angle π/4, the matrix of that can 

be written as 1 over root 2, 1, 1, 1, -1. 
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So, what is the benefit of this? We know that plus minus states are 1 over root 2, 1, plus 

minus 1. So, this is same as this is also the representation of |D⟩ and |A⟩ because we are 

identifying |D⟩ with plus and |A⟩ with minus. So, when we apply H(π/4) on |D⟩, we get 

1 over root 2, 1, 1, 1, minus 1. 1 over root 2, 1, 1, we get 1, 0, which is |h⟩. Similarly, if 

we apply H(π/4) on |A⟩, we get 1 over root 2, 1, 1, 1, minus 1, 1 over root 2, 1, minus 1, 

and that is 0 and 1, which is v. 
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So, it seems like we can use H, half wave plate to rotate the, to transform the diagonal 

and anti-diagonal bases to horizontal and vertical bases and then we can use polarizing 

splitter to do the measurement. So, our setup for 𝜎𝑥  measurement will look like the 

following. We have state |Ψ⟩ coming, N number of them. We apply a horizontal, half 

wave plate, sorry not horizontal, half wave plate with rotated at π/4  followed by a 

polarizing beam splitter followed by detectors. So, Nv or Nh number of clicks here and Nv 

number of clicks they will be same, this whole thing will be the setup now for 𝜎𝑥 and Nh 

will be actually ND and Nv will be NA in this setup and then we can calculate the 

expectation value as (ND- NA)/ N. 
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Similarly, for 𝜎𝑦, we know the eigenvectors are plus minus y, which is |R⟩ and |L⟩. We 

can write the state |Ψ⟩ as ((cos(ɵ/2)+𝑒𝑖ϕsin(ɵ/2))/√2)|R⟩+((cos(ɵ/2)−sin(ɵ/2))/√2)|L⟩,. 

We can apply operation unitary which takes |R⟩ to |h⟩ and |L⟩ to |v⟩ and they are nothing 

but our quarter wave plate. Again, we are not discussing what is the quarter wave plate, 

but the action of it when it is rotated by 𝜋/4  angle, the matrix representation of it will be 

1, minus i, minus i, 1. The representation for |R⟩ is 1 over root 2, 1, i, and representation 

for |R⟩ is 1 over root 2, 1, minus i. 
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Q(π/4) acting on |R⟩ will be 1 over root 2 1 minus i minus i 1, 1 i, 1 over root 2 that will 

be 1 0 and Q(π/4) |L⟩, 1 over root 2 1 minus i minus i 1, 1 over root 2, 1 minus i is 

nothing but 0 1 that is horizontally polarized light, that's vertically polarized. So similar 

to 𝜎𝑥 our setup will look like the following, we have states coming then we have a quarter 

wave plate rotated π/4 followed by a polarizing  beam splitter and detectors. And our 

expectation value 𝜎𝑦 will be p of |h⟩ or |R⟩ which is the same both are same here, minus 

p of L, this is (NR-NL)/N. So, in that way we can perform measurement over 𝜎𝑥, 𝜎𝑦 and 

𝜎𝑧  basis and we can calculate the probability of the clicks in the two orthogonal 

eigenvectors, we take the difference of that. Those probabilities difference because the 

eigenvalues are plus 1 and minus 1. We calculate the expectation. 
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Once we have the expectation values, {⟨𝜎𝑥⟩, ⟨𝜎𝑦⟩,⟨ 𝜎𝑧⟩} then we can find the state |Ψ⟩, 

which is represented by these three. And hence, we can find the value of ɵ and ϕ and we 

can estimate what state was, which was under consideration. So, this is one experimental 

way of finding out the state of a quantum system. 

 


