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Qubits, these are basic blocks of quantum computation and quantum information theory. 

So, what is a qubit? Any two-level system called a qubit. So, it should have two levels. 

For example, the polarization of a single photon. Polarization can take two orthogonal 

directions. 

Two orthogonal states like horizontal and vertical or diagonal and anti-diagonal or left 

and right circular polarization, so there are two orthogonal states of polarization and a 

single photon can exist in any superposition of those two orthogonal states then we can 

consider atoms with two energy levels. We can't have atom with just two energy levels. 

So, we just focus on two energy levels. We interact with those two and we disregard the 

other levels. In that way, we can treat an atom like a qubit. Then we can have quantum 

dots. 

We can design quantum dots where the two levels are of interest and we disregard all the 

other levels. Again, we will have a qubit. We can have a single photon, existing in a 

superposition of two waveguides. The single photon can go to one waveguide or the other 

waveguide, so, two paths let us say. So, this is called dual rail qubit, this is also another 

example of qubit which is used commercially as well as in the foundational research. 

Other is the superconducting qubits using the Josephson junction and SQUIDs. You can 

realize a system where the two states can be faithfully recognized identified and that can 

be used as qubit.  All the commercial quantum computers are based on superconducting 

qubit at the moment. There are qubits with neutral atoms or there's quantum computers 

with neutral atoms or ion traps or photons also but the most successful so far is the one 

with superconducting qubit. 

So, mathematically, the state of a qubit |Ψ⟩ belongs to a Hilbert space, which is a two-

dimensional Hilbert space, two-dimensional vector space. So, it means there can exist at 

most two mutually orthogonal states. Like we said the polarization of a single photon, we 

have horizontal and vertical. So, there are only two at a given time, there are only two 



orthogonal polarizations. So, the H2 or two-dimensional Hilbert space is the defining or 

the vector space belonging to the qubit. 
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So, of course, the states are from the projective Hilbert space. So, that will be CP1 

complex projective, one dimensional. So, a state |Ψ⟩ in the matrix form will be a two-

dimensional vector, alpha and beta, where alpha and beta both are complex numbers. So, 

the states |Ψ⟩ should be normalized. So, ⟨Ψ|Ψ⟩ should be 1, that comes out to be alpha 

mod square plus beta mod square equals 1. That is the normalization condition. 
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Now, both alpha and beta are complex numbers, so we can write them in the polar 

decomposition like alpha to be a exponential of i delta and beta equals b exponential of i 

gamma, where a and b are real numbers, delta and gamma are phases. So, in that way, we 

can write any arbitrary alpha and beta in this form. So, the normalization condition turns 

out to be a2+b2=1. So, instead of calling them a and b and this normalization condition, 

we can just call them, cos(ɵ/2) is a, and sin(ɵ/2) is b.  Over 2 is more traditional and it 



will be useful in some geometrical representation, but this by 2 is not really 

mathematically relevant, but it is good for some simplifications later on. 

Once we say a and b are cosine, sine functions of the same parameter, then a2+b2=1 is 

automatically satisfied. Then because of the ray property of the state |Ψ⟩, a state |Ψ⟩ and 

a state |Ψ′⟩ = 𝑒𝑖𝜁|Ψ⟩ represent the same physical state of a quantum system. So, it means 

we can first write 𝑎𝑒𝑖𝛿, 𝑏𝑒𝑖𝛾. This state is same as a, 𝑏𝑒𝑖(𝛾−𝛿) and it is same as 𝑎𝑒𝑖(𝛿−𝛾), 

b. In all three what we have done in the second one we have just taken 𝑒𝑖𝛿 common and 

forgotten about it and in the third one we have taken 𝑒𝑖𝛾 common and forgotten about it 

so if we say we can stick to this notation because that's again very traditional and 

convenient and we call 𝛾 − 𝛿 to be ϕ, so |Ψ⟩ becomes cos(ɵ/2) and sin(ɵ/2)𝑒𝑖ϕ. So, we 

get a canonical form of a state of a two-level system and that is cos(ɵ/2), sin(ɵ/2)𝑒𝑖ϕ. So, 

here theta is between 0 and π and ϕ is between 0 and 2π. That just to avoid repetition. 

This was about state. 
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Now next is the observable, 2 by 2 Hermitian, matrices represent the set of all the 

observables for a two-level system. So, this is two by two set of Hermitian operators also 

forms a linear vector space. And the dimension of this can be calculated. We just write it 

dimension of this is four. The basis for it can be chosen anything, but we choose 

something more particular. 
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 It's called poly operators. This will be used extensively in the later on studies. So, these 

are the four operators, identity, Sigma X, Sigma Y, Sigma Z. Sometimes we call them 



Sigma 1, Sigma 2 and Sigma 3 also. The definition of these identity is just [
1 0
0 1

], 𝜎𝑥  is 

[
0 1
1 0

], 𝜎𝑦  is [
0 −𝑖
𝑖 0

] and 𝜎𝑧 is [
1 0
0 −1

]. This is how we define the four poly operators. 

So, these operators being basis means any Hermitian 2 by 2 operator A, can be written as 

∑ 𝑎μ𝜎μ
3
μ=0 , where 𝜎0 is identity and 𝜎1,2,3 are defined up there and a's are the real vectors, 

𝑎μ is a real number. So, if we expand it, it will look like 𝑎0 + 𝑎3, 𝑎1 −  𝑖𝑎2, 𝑎1 + 𝑖𝑎2 and 

𝑎0  −  𝑎3 . We can see that once 𝑎1, 𝑎2, 𝑎3  and 𝑎0  are real, then this is a Hermitian 

operator. And we can also see that if we are given a Hermitian operator and arbitrary 

Hermitian operator, we can always find 𝑎0, 𝑎2, 𝑎3  and 𝑎3  for that operator. So, this 

becomes the representation of a Hermitian operator or decomposition of Hermitian 

operator in terms of poly metrices. 
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The expectation value of A is, in a given state |Ψ⟩, is ⟨Ψ|𝐴|Ψ⟩, which will become sum 

∑ 𝑎μ⟨𝜎μ⟩3
μ=0 . If we are given |Ψ⟩ to be cos(ɵ/2), sin(ɵ/2)𝑒𝑖ϕ, then we can calculate ⟨𝜎x⟩. 

It comes out to be sin(ɵ) cos(ϕ). 𝜎x expectation is sin(ɵ) sin(ϕ) and 𝜎z expectation to be 

cos(ɵ). So, in that way, for a given state |Ψ⟩, we can calculate the expectation values of 

sigma x, sigma y, sigma z, expectation value of identity is 1. And so, from these three 

expectation values, we can calculate the expectation value of an arbitrary observable in 

lab. 
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One interesting example of such operator is the Hermitian operator is the Hamiltonian. So 

let us represent it by H and this will be again ∑ ℎ𝜇𝜎𝜇
3
𝜇=0 . So, we expand it, it becomes 



ℎ0 + ℎ3, ℎ1 −  𝑖ℎ2, ℎ1 + 𝑖ℎ2 and ℎ0  −  ℎ3. So, this is the more general Hamiltonian we 

can encounter for a two-level system. Now, we are interested in the eigenvalues of the 

Hamiltonian that will tell us the energy levels of a system. So, the eigenvalues of H can 

be calculated and turns out to be ℎ0 ± √ℎ1
2 + ℎ2

2 + ℎ3
2. So, it means we have two energy 

levels. 

One is the lower one, let us call it ground state. And one is upper one, let us call it excited 

state. The energy of the lower one is ℎ0 − √ℎ1
2 + ℎ2

2 + ℎ3
2 and the energy of the upper 

one is ℎ0 + √ℎ1
2 + ℎ2

2 + ℎ3
2. So, we can shift the energy of the whole system in such a 

way that the center comes in the, the zero comes in between the two levels, exactly 

between the two levels. So, that the separation, this separation and this separation is 

same. 
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So, in that way we can get rid of ℎ0. So, it means we can write the Hamiltonian H and 

H′ = H − h0I, will give you the same result, will have the same behavior. Now, we can 

call this energy as E/2 and this as minus E/2 or this is ℏω/2 and this is -ℏω/2. And we 

can represent excited state with |e⟩ and ground state with |g⟩. Then the Hamiltonian 

becomes the, these are the eigenvalues. So, -ℏω/2|g⟩⟨g| + ℏω/2|e⟩⟨e|. 

This becomes the canonical form of a Hamiltonian for a two-level system, where |g⟩ and 

|e⟩ are the eigenstates, and ℏω is the energy separation between |g⟩ and |e⟩. Now, if we 

choose |g⟩=[
1
0

] and |e⟩=[
0
1

], that is the eigenvectors of σ𝑧, then our H becomes 

- ℏω/2 [
1 0
0 0

] + ℏω/2 [
0 0
0 1

] , which comes out to be −(ℏω/2)σ𝑧 . So, any 

Hamiltonian, if there is no preferred basis for a Hamiltonian, then the Hamiltonian of a 

system, of a qubit system can always be taken as some multiple of 𝜎𝑧 . That is the 

simplest Hamiltonian we can choose if there is no preferred basis. If there is preferred 

basis, then we of course have to write, we have to choose |g⟩ and |e⟩ in that basis. 



Otherwise, we can choose it eigen state of σ𝑧 and that sets the basis and then everything 

else can be represented in this basis. Next is the time evolution. So, the Schrodinger 

equation does not change with the dimension, where H is the Hamiltonian and if the 

Hamiltonian is time independent then |Ψ(t)⟩ is exponential of exp[-iH(t-t0)/ℏ]|Ψ(t0)⟩. 

Now, exponential of the Hamiltonian, we can write as, this is (𝑒𝑖ω(t−t0)|g⟩⟨g| +

𝑒−𝑖ω(t−t0)|e⟩⟨e|)|Ψ(t0)⟩. 
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If |Ψ(t0)⟩, the initial state is cos(ɵ/2) |g⟩ + 𝑒𝑖ɵ sin(ɵ/2) |e⟩. Then the state at time t will be 

𝑒𝑖ω(t−t0)|g⟩ + 𝑒𝑖ɵ𝑒−𝑖ω(t−t0)sin(ɵ/2) |e⟩ . In that way, we can calculate the the time 

evolution of two-level system. 
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