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Consider two orthonormal bases. One is |𝜒𝑛⟩ and one is |𝑢𝑛⟩, in the same vector space V. 

They are both orthonormal bases, it means we can write |𝜒𝑛⟩ as ∑ 𝑊𝑚𝑛|𝑢m⟩𝑚 . We can 

write the vectors of one orthonormal basis as a superposition of the other orthonormal 

basis. Now, since this is an orthonormal basis, then ⟨𝜒𝑘|𝜒𝑛⟩ should be 𝛿kn. That is the 

definition of orthonormal basis. If we substitute this expression for |𝜒𝑛⟩ , we get 

∑ 𝑊*𝑚1𝑘 𝑊𝑚2𝑛 |𝑢m⟩⟨u𝑚1
|u𝑚2

⟩𝑚1,𝑚2
. Since {|𝑢m⟩} is also an orthonormal basis. So, this 

is 𝛿𝑚1𝑚2. So, we can replace all m1 with m2 when we sum over m2 and we just call it m. 

We get ∑ 𝑊*𝑚𝑘 𝑊𝑚𝑛 𝑚 . So, this has to be equal to 𝛿kn. 
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Now let us see what it looks like, ∑ 𝑊†
𝑘𝑚 𝑊𝑚𝑛 𝑚 . Now, you can see that 𝑊†

 is actually 

the (𝑊∗)𝑇 if we have matrix 𝑊. And so, it means 𝑊𝑖𝑗  element of this matrix W, the W 

dagger's ij element will be 𝑊𝑗𝑖
∗. So, this is what we have done here. 𝑊𝑚𝑘

∗ .  becomes 𝑊𝑘𝑚
†

 

element of 𝑊† matrix. So, it means ⟨𝜒𝑘|𝜒𝑛⟩ becomes ∑ 𝑊†
 𝑊 𝑚 . 



You can check that this is actually the matrix multiplication of 𝑊†
 and W and the kn 

element of that. And this is equal to 𝛿kn. This implies that 𝑊†
 𝑊  is identity. Similarly, 

we could have written u in terms of chi and we would have gotten 𝑊 𝑊
†

 equals identity. 

This implies that W is unitary. 

From here, we can conclude that a unitary operator causes a basis transformation. And 

when we say basis, we mean orthonormal basis. Unitary transformation, a unitary 

operator takes one orthonormal basis and map it to another orthonormal basis. So, this is 

what we showed just now. We can do something else also. 
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Let us say we have Z, which is |𝜒𝑛⟩⟨𝑢𝑛| and sum over n. Now, if Z acts on |um⟩, it will 

give us |𝜒m⟩. This is also a transformation from one basis to another. So, we can see what 

is ZZ†, that will be ∑ |𝜒𝑛⟩⟨𝑢𝑛|𝑛 ∑ |um⟩⟨𝜒m|𝑚 . And when we multiply, ⟨un|um⟩ will give 

us 𝛿nm, ∑ |𝜒𝑛⟩⟨𝜒m|𝑛𝑚 𝛿nm, which is equal to ∑ |𝜒𝑛⟩⟨𝜒n|𝑛 , which is identity. Similarly, Z†Z 

is also identity so this is also a unitary so now this is another example of unitary which is 

taking one orthonormal basis to another. So, can we find a relation between the two 

unitary ? So, this can be one assignment problem. This will be a fun problem, not very 

complicated, but not really straightforward. 
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So, I will recommend everyone to try this thing and try to figure out what is the relation 

between Z and W. So, with this, we have covered all the important classes of operators, 

but there are some operators which we will encounter eventually and which are, which 

will come at a little later stage of our course, positive definite and positive semi-definite 



operators. So, if an operator A, if we take the inner product of |𝜓⟩ with 𝐴|𝜓⟩ and this 

sometimes is called expectation value also. So, if the expectation value of an operator A 

is always positive, then it is called positive definite operator. This should be true for all 

|𝜓⟩ in the vector space V. If this is true, then it's called positive definite. If it can be zero 

and positive, then it's called positive semi-definite. 
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And any Hermitian operator with positive eigenvalues are positive definite operators. 

And Hermitian operator with positive and zero eigenvalues are positive semi-definite 

operators. So, this was the one class which we will be using time and again when we talk 

about the states and density matrices. Now, there is some interesting expressions and 

representations of operators, the various operators we just discussed. So, we will be 

discussing that. 

So, consider an operator A acting on, so the eigenvalue equation, the characteristic 

equation of an operator and for a Hermitian operator, like A is a Hermitian operator. Let 

us define a matrix S which is made by using the eigenvectors of the operator A in the 

following way. We put first column as the first vector, second vector, second column as 

the second eigenvector and nth column as the nth eigenvector. In that way, we are 

assuming the matrix A was n by n. So, the vector psi n will be also n-dimensional vector 

and there is n of them. So, S is a n by n matrix. Let me repeat, we stack the eigenvectors 

of operator A, Hermitian operator A, the columns of matrix S and hence we get a n by n 

matrix. 
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Now, interesting thing about S is, first of all, let us see what is S†. S† will be |𝜓1⟩, |𝜓2⟩, 

|𝜓3⟩  and |𝜓n⟩. Now what is SS†, that will be [|𝜓1⟩, |𝜓2⟩,.. |𝜓n⟩] times [⟨𝜓1|, ⟨𝜓2|,.. 

⟨𝜓n|] (𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠). There is no trick I am using here. You can put the vectors. 

You can take the explicit form of vector. You can put them and you will see this is a valid 

matrix multiplication. Then when we multiply, it will be the first element of the vector. 

We can treat this thing as the vector of vectors. 

And this is a column of vectors. This is a row of vectors. This is a column of vectors. So, 

the first element here and first element here, we multiply second, second and we add all 

of the elements. So, it becomes ∑ |𝜓𝑛⟩⟨𝜓n|𝑛 . So, SS† is ∑ |𝜓𝑛⟩⟨𝜓n|𝑛 . Since {|𝜓𝑛⟩} are the 

eigenvectors of a Hermitian operator, so they form an orthonormal basis and they form a 

complete basis, it means ∑ |𝜓𝑛⟩⟨𝜓n|𝑛 , this must be identity.  
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Now let us try S†S, that will be [⟨𝜓1|, ⟨𝜓2|,.. ⟨𝜓n|](𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠), [|𝜓1⟩, |𝜓2⟩,.. 

|𝜓n⟩]. This is the matrix. The first element here will be ⟨𝜓1|𝜓1⟩, ⟨𝜓1|𝜓2⟩ and so on, 

⟨𝜓2|𝜓1⟩ and so on up to ⟨𝜓n|𝜓n⟩. Now, |𝜓⟩  are orthonormal. So, only the diagonal 

element will be 1. Everything else will be 0. So, matrix will be 1, 1, 1, 1 and so on and 0 

everywhere else, which means identity. So, from here we can see that SS† equals S†S 

equals identity. 
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So, somehow the matrix S turned out to be unitary. What we have done is we have taken 

a Hermitian operator A. A is Hermitian, and we have eigenvectors of it, and we have 

eigenvalues of it. We make a matrix S out of the eigenvectors of A and we see that this 

matrix S turns out to be a unitary matrix. So, now let us simplify the equation. We get A 

S, which is A acting on [|𝜓1⟩, |𝜓2⟩,.. |𝜓n⟩], which is, if we do the calculation, it will be 

[𝐴|𝜓1⟩, 𝐴|𝜓2⟩,.. 𝐴|𝜓n⟩], which will be [λ1|𝜓1⟩, λ2|𝜓2⟩,.. λ3|𝜓n⟩], which will be [|𝜓1⟩, 

|𝜓2⟩,.. |𝜓n⟩],  times diagonal matrix with elements λ1, λ2,.. λn, where everywhere else it is 

0. 
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So, we have seen that and this we can write as the same matrix S and this diagonal matrix 

D. So, we have seen that AS equals SD. So, we have written the whole eigenvalue 

equation in this matrix equation. Now, since S is unitary, we can multiply with S†. SS† is 

identity. So, we get A=SDS†. 
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Any Hermitian operator A can be diagonalized using a unitary operator S. This is very 

simple and intuitive proof that any Hermitian operator can be diagonalized using a 

Hermitian operator S. Not just that, anti-Hermitian can also be done there because anti-

Hermitian is just i times Hermitian. So, the proof goes in a similar way. And for other 

operators also, we can do whatever is related to Hermitian operator. Now, what will 

happen if A was not a Hermitian operator? 

If A is not a Hermitian operator, then |𝜓𝑛⟩ are not orthonormal. But let us assume that A, 

but we have n number of linearly independent vector |𝜓⟩. Then S, which is [|𝜓1⟩,… 

|𝜓𝑛⟩]. This is the matrix of n linearly independent columns. If you remember our linear 

algebra from our 12th standard, if we have matrix with n linearly independent vectors, 

then the S inverse, the inverse of the matrix exists. 

So, it means AS equals SD, that did not require any information about the unitary of S. 

So, here if we multiply with S-1, we get SDS-1 and we get A equals SDS-1. This is the 

diagonalization by similarity transformation. It's called diagonalization by similarity 

transformation. The previous one with unitary that is also similarity transformation, but 

of a very specific type that we are using the unitary matrix instead of invertible matrix, 

instead of just invertible matrix. So, there are two problems, two assignment problems we 

can think of right now that if you have two Hermitian operators, self-adjoint operator A 

and B such that they have same eigenvectors. 

Then they commute. That is, [A, B] = 0, okay prove this thing, this is an assignment 

problem. If A and B have the same eigenvalues, then they are related by a unitary 

transformation. So, these are the two assignment problems one should try and they will 

be very intuitive, very interesting to understand. Now we will discuss functions of 

operators. We will be mostly concerned with either Hermitian or anti-Hermitian or 

unitary operators. 
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But if we have operator A, which is SDS†, like we have seen, then A2 will be 

(SDS†)(SDS†), which is SD2S†. If we extend this thing, if we have a function of A, any 

function of A, then it will be S, the same function of D, S†. So, this we can see by like 

one example we can consider, which is the exponential of A. The exponential of A will 

be written as identity plus A plus A square over 2 factorial and so on. And we can write 

A, S D S† plus S D2 over 2 factorial, S dagger plus and so on. And this identity is also 

SS†. This is S, identity plus D plus D2 over 2 factorial and so on, S†. 
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And this is S, exponential of D, S†. How is it useful? It's useful because calculating 

directly exponential of A is difficult. But exponential of a diagonal matrix, which is 

exponential of lambda 1, lambda 2, lambda n is nothing but exponential of lambda 1, 

exponential of lambda 2, exponential of lambda n. So, this part is trivial to calculate and 

then you have to just multiply it with the unitary matrix and we get the function of the 

operator. 
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Now, let us say we have a matrix M which is exponential of A and let us say this is 

unitary. Then M† equals M-1. M† can be written as exponential of A† and M-1 is 

exponential of -A. This implies that A† has to be -A and by definition A† = -A implies 

that A is anti-Hermitian. Or, A can be written as iH where H is hermitian. This implies 

that any unitary operator M can be written as exponential of iH where H is hermitian and 

M is unitary. 
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Now there can be an assignment problem which let's call 3. If we have a unitary operator 

M, the eigenvalues of M will be pure phases, that is exponential of i theta, that kind of 

form it will have okay and eigenvectors will be orthonormal basis, you have to prove this 

thing. And fourth assignment problem can be, let us say we have M1, which is 

exponential of iH1, M2 which is exponential of iH2, then M which is M1M2. You can see 

that if M1, M2 both are unitary then M, which is a product of M1, M2, this will also be 

unitary and this can also be written as exponential of iH. Find H. 
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