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Hello everyone. In this lecture and next few lectures, we will be discussing the 

mathematical prerequisites required for the foundations of quantum mechanics course. 

So, in this series on the set of lectures we will cover the linear vector spaces, linear 

operators and the representation, matrix representations and stuff like that. So, throughout 

this course, we will come back to mathematical methods, mathematical prerequisites in 

which we will cover the tensor operators and whatever is required mathematically to 

understand this course. So today we will start with linear vector spaces. 

A linear vector space V is a set of vectors we represent by {|𝑣𝑖⟩}, which satisfies certain 

properties. Those properties are the following there is a vector space set of vectors over a 

field of scalars, the set of scalars let us call them {𝑎𝑖},  these are vectors these are scalars 

so a vector, a set of vectors {|𝑣𝑖⟩} over a field {𝑎𝑖},   is called linear vector space if it is 

closed under vector addition and scalar multiplication. What we mean by that is if we 

have a vector |𝑣⟩ and we multiply it with a scalar a, then also it's a vector from the same 

vector space in that. The set v should contain, if it contains |𝑣⟩ then it should all contain 

a|𝑣⟩ for every a and for every |𝑣⟩ okay, not just that if we have two vectors |𝑣1⟩ and |𝑣2⟩, 

then there sum, which sum is some abstract operation we have defined over this vector 

space so the sum should also be from the same vector space, same set. So we can write 

one statement which contains both the conditions 𝑎|𝑣1⟩ + b|𝑣2⟩ should belong to the 

same set so this is what we mean by closed under vector addition and scalar 

multiplication.  

Further, associativity, if we have three vectors |𝑣1⟩, |𝑣2⟩ and |𝑣3⟩, then it shouldn't matter 

in what order we add them we should get the same outcome. Then, there is a requirement 

of null vector. There should exist a vector |0⟩, we call it zero, such that if we add it with 

any vector |𝑣⟩, the resultant is the vector |𝑣⟩. So |0⟩ should also exist in this set. And if 

there is a null, there will be some inverse. The inverse vector for a given vector |𝑣⟩, the 

inverse will be defined by |�̅�⟩ such that |𝑣⟩ + |�̅�⟩ is the null vector. So, if we have a set of 

vectors, vectors can be any abstract quantity or any abstract mathematical structure such 



that it can be worked out with the scalars and we can define operations such as scalar 

multiplication and vector addition over that then that that set of vectors can be called a 

linear vector space if it satisfies these four conditions, okay. 
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So, there is a little bit more condition, but these are the main four conditions which need 

to be satisfied. And if that satisfies, then we can call it a linear vector space. It has certain 

property which will be revealed as we go along this lecture. And we will know eventually 

this can be very powerful mathematical structure to understand many concepts in 

foundations of quantum mechanics. So to understand it better, let's take examples. 

So, set of all the real numbers be represented by this R. And this is a scaler, this set is, it 

forms a linear vector space. We have to define this; it forms a linear vector space over the 

field of real numbers. Okay. So, if we have a x, which is a real number from this set then 

we multiply it with the scalar which is also a real number that also belongs to, ax also 

belong to R. So, if we have x1 plus x2 or ax1+bx2, this is also a real number, so it belongs 

to R. So, it satisfies the first condition that is closed under vector addition and scalar 

multiplication Now, if we take three real numbers, it does not matter how we add them. 

If we take the definition of addition as the regular definition of addition, then it does not 

matter in what order we add them, we get the same number. So, it satisfies the 

associativity. There is a null vector that is the real number 0, such that if we add 0 with 

any number, we get the same number back. So that's the null vector. And for every real 

number x, there exists a -x. 

So, such that x+(-x) gives us the 0, so, we get a inverse also. So, set of real numbers also 

form a vector space over real field. Similarly, we can have set of complex numbers we 

represented by C, over real field. It forms a vector space over complex field, it forms a 

vector space. It's trivial to understand all this thing, we can do it ourselves. Slightly more 



non-trivial set example will be set of, ordered set of two real numbers x and y. So, this is 

represented by R2, so this we know, it is the two-dimensional plane we can have. So, any 

vector in this two-dimensional, any point in this two-dimensional vector, two-

dimensional plane is represented by x, y. So, that is the geometrical representation of R2. 

Now, the scalars will be the real numbers. If we multiply vector x, y with a scalar, we get 

another vector in the same two-dimensional plane. 
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If we have, we can define the addition operation as x1+x2, y1+y2, so that will would 

amount to having one vector, second vector, so, and the sum will be given by this vector. 

So, that is the vector addition we have defined in R2. So, under this vector addition we 

can see that it's closed over scalar multiplication and vector addition because addition of 

two such vectors will give us another vector in the same R2. Then there is associativity, 

the three vectors we add in any form any way it does not matter we will get the same 

answer. And the null vector will be the (0,0), that is the origin of this two-dimensional 

plane. And invert will be, (x, y) inverse will be (-x, -y). So, in that way, it satisfies, R2 

satisfy all the properties required to be linear vector space. It's not enough to give the 

examples in favor. 
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To understand something, it's also important to give some examples which do not satisfy 

the criteria, for example, we can have R2 over complex field C, then it does not form a 

vector space. Because if we have (x, y) which is from R2, then, if we multiply with 𝛼, 

some complex number, then it does not belong to R2 because it's no longer real. So, in 

that way, this is one simple example where we see that a set of vectors does not satisfy 

the linear vector space criteria. So R2 over complex is not a linear vector space. Another 

example which can be very interesting, which will be very useful for us is set of n by m 

matrices, set of all the n by m matrices, complex matrices over complex field is also 

vector space. If we take a matrix M, which is from this set, then M1+M2 will also be the 

same n by m matrix complex matrix so if we multiply it with 𝛼1 and 𝛼2, then also it's 

from the same vectors, same set. So, it's all, if we check one by one all the conditions, we 

will see that uh for example the null matrix will be the matrix of zeros is the null matrix 

and minus of M will be the inverse matrix or inverse. So, in that way, we will see that this 

set of n by m complex matrices also form a linear vector space. One of the very 

interesting subsets of this is of particular interest to us, that is the Hermitian operators, 

Hermitian matrices. Hermitian matrices H let us say is defined as a matrix which is equal 

to its own Hermitian conjugate. Hermitian conjugate is defined as transpose and 

conjugate. So, if a matrix is equal to its own Hermitian conjugate, then it's the Hermitian 

matrix, and this is interesting from quantum mechanics point of view because all the 

observables are represented by Hermitian operators, Hermitian matrices. 

So, this matrix, this set of matrices, Hermitian matrices form a linear vector space over 

real field. Although the elements of the Hermitian matrix can be complex numbers but it 

forms a linear vector space only over the real field not on the complex field. So, if we 

have matrix H1 which is Hermitian and we have H2, which is also Hermitian then, and we 

multiply with scalar field a and b, if we take the Hermitian conjugate of that it will be 

𝑎𝐻1
† + 𝑏𝐻2

†
, which is 𝑎𝐻1 + 𝑏𝐻2, so it's the same matrix so it's a Hermitian. So, in that 

way it's closed over scalar multiplication and vector addition. Associativity, this is the 

simple addition of the matrices so it does not matter in what order we add them so 

associativity is trivially satisfied. The null vector, the matrix of all the zero elements is a 

Hermitian matrix so that will be the null vector and a negative of a Hermitian matrix is 

also a Hermitian matrix so that will serve as the inverse vector. So, in that way the set of 

all the Hermitian matrices over real field forms a linear vector space. And this will be 

used extensively in the entire course. So, with these examples, I hope we have a little bit 

of better understanding of what it takes to be a linear vector space but we do not stop here 



at the definition of linear vector space, we can introduce further structure over the vector 

space that is for example we can introduce inner product. 

Till now we had any operation involving two vectors was just the addition which was the 

vector addition but now we can introduce another structure that is the inner product 

between the two vectors, so if you have an inner product, is a mapping on the vector 

space, the inner product, let me represent by I, which takes vectors of V and it's mapped 

to scalar. Scalar field is generally represented by f, so v goes to f okay so it's actually v x 

v, so two vectors go to f. So, we can define, if we have two vectors |𝑣1⟩ and |𝑣2⟩ from the 

vector space V, then we write the inner product as (|𝑣1⟩,|𝑣2⟩), okay so ordered set of 

these two vectors and it satisfies certain property. First of all, the property is that 

(|𝑣1⟩,|𝑣2⟩), which is a scalar, (|𝑣1⟩,|𝑣2⟩), is equal to (|𝑣2⟩, |𝑣1⟩)∗, it's a conjugate. The 

conjugate in any sense we define conjugate on the field. So, this will be one element of 

the field and it will be the conjugate element of the field. Typically, the kind of vectors 

we are interested in, the field is complex. So, then it will be a complex conjugate. 
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So, the inner product of two vectors will give you some complex number and the inner 

product of the same two vector, but in the reverse order will give us the complex 

conjugate of the same number. Now, if we have a scalar times the first vector |𝑣1⟩ and 

|𝑣2⟩, the second vector, then it will be 𝛼∗(|𝑣1⟩,|𝑣2⟩), and if we have (|𝑣1⟩, 𝛼|𝑣2⟩), then it 

will be 𝛼(|𝑣1⟩,|𝑣2⟩). It means the inner product is linear in the second argument and 

antilinear in the first argument okay and then there are some simple relations 

|𝑣1⟩,|𝑣2⟩,|𝑣3⟩ with three vectors such that we are taking the inner product of |𝑣3⟩ with the 

sum of |𝑣1⟩ and |𝑣2⟩, then, it can be decomposed as (|𝑣1⟩,|𝑣3⟩)+(|𝑣2⟩,|𝑣3⟩). 

It seems very trivial but sometimes these properties can be very important. So, 

throughout the quantum mechanics course or foundations of quantum mechanics course, 

we will be representing (|𝑣1⟩, |𝑣2⟩), as ⟨𝑣1|𝑣2⟩, so this will be the definition, this is how 

we will be representing the inner product. Once the inner product is defined over a vector 



space, then certain structures or certain definitions can be given, for example, we can 

define the norm of a vector, that is given by |𝑣⟩ with the inner product of it with itself, 

and the square root of that, that is this is how we define the norm which is basically the 

length of the vector in some metric and we can sure like from the first definition of the 

inner product we know that ⟨𝑣|𝑣⟩ is a real number, not just that ⟨𝑣|𝑣⟩  is also a positive 

number okay and equality holds only for the null vector, not generally every vector will 

have non-zero no other than the null vector. We can define the orthogonal vectors, that is 

you have two vectors, |𝑣1⟩ 𝑎𝑛𝑑 |𝑣2⟩, they are orthogonal if their inner product is zero 

then they are called orthogonal, normalized vectors, that if the norm of a vector is 1, then 

it is called a normalized vector. 
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So, if we have linearly independent vectors, if we have a set of vectors |𝑣𝑖⟩, then they are 

called linearly independent, if ∑ 𝑎𝑖|𝑣𝑖⟩ = 0𝑖 , this equation has the only solution such that 

ai is 0 for all i, then only, we call this set of vectors linearly independent. What does that 

mean? Let us say there exists a solution where not all ai are zero and we get this, we can 

satisfy this equation by taking a set of ai such that not all of them are zero. So, in that 

case, we can represent, let us say |𝑣1⟩ as -(1/𝑎1) ∑ 𝑎𝑖|𝑣𝑖⟩𝑖≠1 . So, it means one vector out 

of these all vectors can be written as the sum of all the other vectors. 

So, in that way there is a, so let us say a1 was non-zero. So, it means we can write the 

vector |𝑣1⟩ as a linear sum of ll the other vectors in this set, some of these other vectors in 

the set. In that way, one vector depends on the other vectors. So, in that sense, it is not 

independent set. 

So, the independent set will be the one in which none of the vector can be written as a 

sum of the other vectors. Okay, so, what is the significance of this, if we get the largest 

set of linearly independent vectors in a vector space, okay, then the cardinality of this set, 

cardinality of this called the dimension of the vector space. The cardinality or the number 

of, the maximum number of linearly independent vectors in a vector space tells us the 



dimension of the vector space. What is the dimension of the vector space? For R1, the 

dimension was 1 because you have just one number which is, which is one vector which 

is independent and all other vector depends on it if you just multiply it with scalars. 
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In R2, we need at least two vectors to represent all the other vectors. So, in R3, it would 

be three in different vector spaces, we have different number of vectors. So, for example, 

and this I will insist that you verify if we have two by two Hermitian operators. We said 

that Hermitian matrices form a vector space. So, we consider 2 by 2 Hermitian operators. 

Then we can write it as some [
𝑎 𝑏
𝑐 𝑑

] . And we can see if we put the Hermiticity 

condition, then it will give us a and d in real numbers and 𝑏 = 𝑐∗. So, we can write an 

arbitrary Hermitian operator as [
𝑎 𝑏
𝑏∗ 𝑑

]. Now how many, what is the dimension of this 

vector space, we need to ask and I'm giving you the example or I'm giving you the 

answer but please verify this thing. We can choose vectors, this is one vector we can 

choose another vector, this is a Hermitian operator. We can choose another vector which 

is Hermitian operator. We can choose another [
0 1
1 0

] and we can choose [
0 −𝑖
𝑖 0

]. These 

four matrices are the Hermitian operators are some Hermitian operators and you can 

write any of the operators of this form as a linear sum of these four operators with real 

coefficients. For example, we can write H to be a times, let me call it e1, e2, e3, e4, the 

vectors. Then I can write H as 𝑎𝑒1 + 𝑐𝑒2 + ((𝑏 + 𝑏∗)/2)𝑒3 + 𝑖((𝑏 − 𝑏∗)/2)𝑒4. So, in 

that way, we can write an arbitrary matrix as a linear sum of these numbers. So we can 

write an arbitrary matrix H Hermitian operator as a linear sum of these four operators. So 

it means if I have a set of five Hermitian operators such that four of them are e1, e2, e3, e4, 

and the fifth one is something else. Then I can write that matrix, fifth matrix is the sum of 

the four, e1, e2, e3, e4. 
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So, the largest independent, the largest set of linearly independent vectors in the linear 

vector space of Hermitian operators will have the cardinality of four because you can 

have only four independent vectors in it. So, it means the dimension of two-by-two 

Hermitian operators is four, okay, so dimension of such vector space is four. So, later on 

we will be using this definition, the definition of these dimensions to characterize many 

vector spaces and to talk about few things which will be clear soon. So, once we define 

the inner product structure or the linear vector space, there are many interesting 

properties which emerges out of these structures. One of them, one of the most useful is 

the triangular inequality. So, it goes like this. If we have two vectors, |𝑣1⟩  and |𝑣2⟩, then 

their norm ||v1|| and ||v2|| that is their lengths in some sense, the sum of their length is 

always greater than or equal to the sum of the length 𝑣3, where |𝑣3⟩ vector is the sum of 

|𝑣1⟩+|𝑣2⟩. So, the sum of the individual length of two vectors is more than the length of 

the sum of the vectors. So, we can graphically, we can see it like this, we have a vector 

|𝑣1⟩ and a vector |𝑣2⟩, then there's sum, as we know from our earlier experience the sum 

is represented by |𝑣3⟩. So, in this, the three vectors |𝑣1⟩, |𝑣2⟩, this is |𝑣2⟩ and |𝑣3⟩, they 

form a triangle. So, basically what we are saying in this inequality is the sum of two sides 

of a triangle is always greater than the third side. 

It can be only equal when it is not really a triangle, when we have two vectors |𝑣1⟩ and 

|𝑣2⟩ collinear and third one is also in the same direction. So that's the trivial case, but if 

we have a valid triangle, then the sum of the two sides is always greater than the third 

side. So, this inequality is true in general for any vector space where we have defined the 

inner product using the definitions we discussed earlier. So, to prove it, we start with 

something called Cauchy Schwarz inequality. This is another very interesting inequality 

in linear vector space with inner products. 
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So, this goes like this. If we, let us define a vector |𝑢⟩, which is orthogonal to |𝑣1⟩. So, 

how do we get this thing? This is orthogonal to |𝑣1⟩ and it is in the same plane as |𝑣1⟩ 

and |𝑣2⟩. So, how we define it, then we can say |𝑢⟩ is 

 |𝑣2⟩-( |𝑣1⟩ ⟨𝑣1|𝑣2⟩)/||𝑣1||
2
. Now, if we see the inner product of |𝑣1⟩ with|𝑢⟩, that will 

be ⟨𝑣1|𝑣2⟩ − ⟨𝑣1|𝑣1⟩⟨𝑣1|𝑣2⟩/⟨𝑣1|𝑣1⟩ . This cancels and we have ⟨𝑣1|𝑣1⟩  and we have 

⟨𝑣1|𝑣1⟩ and that's zero so it means |𝑣1⟩ and |𝑢⟩ are orthogonal. 
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Now we can write |𝑣2⟩  as |𝑢⟩ + |𝑣1⟩⟨𝑣1|𝑣2⟩/⟨𝑣1|𝑣1⟩ . So, from here we can see that 

⟨𝑣1|𝑣2⟩ is a sum of two orthogonal vector |𝑢⟩ and |𝑣1⟩ and rest is just a scalar, this thing 

is just a scalar. So, |𝑣2⟩ can be written as two orthogonal vector and if we want to write it 

graphically, if we want to represent it graphically, we have |𝑣1⟩, we have |𝑣2⟩ and we 

have |𝑢⟩, and we are writing |𝑣2⟩ in terms of |𝑢⟩ and |𝑣1⟩ with appropriate weights. So, if 

we represent it in a slightly different way, it will be |𝑣1⟩ with some scalar times |𝑣1⟩, 𝛼, 

where this is 𝛼 and this is |𝑢⟩ and this will be our |𝑣2⟩. 
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So, we have |𝑣1⟩, |𝑣2⟩ and |𝑢⟩ forming a right-angle triangle. So, now we can use in a 

way the Pythagoras theorem or we can just take the, we can, from here we can see that 

the norm of |𝑣2⟩ will be the norm of |𝑢⟩, norm square of |𝑢⟩ which is here and the norm 

of this vector which is norm of |𝑣1⟩ times |⟨𝑣1|𝑣2⟩|2 over |𝑣1|4 . Now, this is the positive 

quantity so we can say, |𝑣2|2 is always greater than or equal to (|𝑣1|2/|𝑣1|4)|⟨𝑣1|𝑣2⟩|2. 

This implies that |𝑣2|2|𝑣1|2 is greater than or equal to |⟨𝑣1|𝑣2⟩|2 or |𝑣2||𝑣1| is greater 

than or equal to ⟨𝑣1|𝑣2⟩. 
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What we have achieved here is that the inner product of two vectors is always less than 

the product of their lengths. This is what we are saying. So, if you have two vectors, |𝑣1⟩ 

and |𝑣2⟩, and you take the product of their length, that will always be greater than the 

inner product of the two vectors, okay. So now, what we can, we will be using this 

relation in the following way, take |𝑣3⟩, which let me remind you which is |𝑣1⟩ + |𝑣2⟩, 

then |𝑣3|2  is ||𝑣1⟩ + |𝑣1⟩|
2

, which is (|𝑣1⟩ + |𝑣2⟩)(|𝑣1⟩ + |𝑣2⟩)  and that is equal to 

|𝑣1|2 + |𝑣2|2 + ⟨𝑣1|𝑣2⟩ + ⟨𝑣2|𝑣1⟩. 



So, we have these four terms when we find the norm of the sum of |𝑣1⟩, |𝑣2⟩. Now, 

⟨𝑣1|𝑣2⟩  is a complex number, if our field is complex. So, we can write it as 

|⟨𝑣1|𝑣2⟩| times the phase factor. So, it's a polar decomposition of a complex number. Any 

complex number can be written as a real positive number times a phase factor. 
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So, 𝑒𝑖𝛼  is our phase. So, |𝑣3|2 can be written as |𝑣1|2 + |𝑣2|2 + |⟨𝑣1|𝑣2⟩|. Just let me 

remind you that ⟨𝑣1|𝑣2⟩ is same as ⟨𝑣2|𝑣1⟩ and we have 𝑒𝑖𝛼 and the other one has to be 

complex conjugate. So, it is 𝑒−𝑖𝛼, which is |𝑣1|2 + |𝑣2|2 + 2|⟨𝑣1|𝑣2⟩| 𝑐𝑜𝑠𝛼. The 𝑒𝑖𝛼 +

𝑒−𝑖𝛼  is 2 𝑐𝑜𝑠𝛼. Now, just remember our earlier inequality that this factor is always less 

than or equal to |𝑣1||𝑣2|, but the whole factor, we still don't know whether it will be less 

or more because 𝑐𝑜𝑠𝛼 can take value between -1 and 1. 
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So, it means we can say that |𝑣3|2 is always greater than |𝑣1|2 + |𝑣2|2 − 2|𝑣1||𝑣2|. And 

it is always less than or equal to |𝑣1|2 + |𝑣2|2 + 2|𝑣1||𝑣2|. What we have done here is, if 

𝑐𝑜𝑠𝛼 is, maximum value of this is +1, if we have, we take the maximum value of it that is 

plus one, then replacing |⟨𝑣1|𝑣2⟩| with |𝑣1||𝑣2|, then this quantity is always greater than 

|𝑣3|2 and if 𝑐𝑜𝑠𝛼 is negative and the maximum negative is -1, then, and then we replace 

|⟨𝑣1|𝑣2⟩| with |𝑣1||𝑣2|, then we get the lower bound on |𝑣3|. So, we get |𝑣3|2 between 

this quantity, which is |𝑣1|2 + |𝑣2|2 − 2|𝑣1||𝑣2| and |𝑣1|2 + |𝑣2|2 + 2|𝑣1||𝑣2|. 



We are, for the time being only interested in this part. So, we get |𝑣3|2 less than or equal 

to (|𝑣1| + |𝑣2|)2. Hence, we get |𝑣3| less than or equal to|𝑣1 + 𝑣2|, and this is what was 

our intention to achieve. 

 

 


