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Consider observable O, which is n cap dot sigma. We are talking about the qubits, the 

sigma vector. Sigma vector is the vector of Pauli matrices and n cap is a three-

dimensional real vector such that the norm of n is 1. So, it represents the direction in the 

R3. We know that in this situation eigenvalues of O operator are plus minus 1 and let us 

say O and O bar are the two orthogonal eigenvectors of O. So, O acting on O will give us 

O and O acting on O bar will give us minus O bar. 

Now, if we define the projectors or operators P plus minus, which is half identity plus 

minus O, then they represent projective measurements. In that case, the expectation value 

of operator O is the expectation value of P plus minus expectation value of P minus. But 

now let us define a parameter lambda, which is between 0 and 1. Then we define E plus 

minus as half identity plus minus lambda O. Lambda we will call the strength of the 

measurement. When lambda tending to 0, we have the weakest measurement. 
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And when lambda tending to 1, we have strongest or projective measurement. We can see 

that P plus minus of projectors we defined just above are same as E plus minus when 

lambda equals 1. So, in this case, now the expectation value of O is related to expectation 

value of E plus minus expectation value of E minus with a slight modification that the 



lambda will come in the denominator. So, if we have lambda very small, then we need to 

have much larger data and we need to find the expectation value of E plus and minus and 

divide it by lambda. If lambda is very large, then it is equivalent to the projective 

measurements. 

These kinds of measurements are important from the point of view of the following 

scenarios. These kinds of measurements are important in the scenarios where we want to 

get some information about the system, but we do not want to disturb the system too 

much. So, in that way, if we perform measurement in E plus and E minus, then the 

system is deviated from the original states slightly. And that deviation is characterized by 

the number lambda. That is why it is called the strength of the measurement. 

(Refer slide time: 3:19) 

 

When lambda is 0 or tending to 0, then the system is undisturbed. So, the state will 

remain undisturbed. But when lambda is 1, then the state is maximally disturbed and it 

will be collapsed to one of the eigenstate of operator. One very interesting application of 

these weak measurements comes in the form of reversible measurements. Let us say the 

observable O is nothing but sigma z. Then our E plus minus are half identity plus minus 

lambda sigma z. 
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That will be half 1 plus lambda and 1 minus lambda. So, these are the two effects we 

have which constitute the POVM. Now, let us define the measurement operators M plus 

minus and they are easy to define in this case. We just say square root of these. That is 

plus minus, minus plus, n plus minus, n minus plus. 
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So, our M plus measurement operator is 1 plus lambda over 2, 1 minus lambda over 2 

and M minus is square root of 1 minus lambda over 2 and 1 plus lambda over 2 and rest 

is 0. Let us recall that e plus minus is M plus minus dagger M plus minus. Since M plus 

minus are the Hermitian operators, so M dagger is same as M, so it is same as M plus 

minus square, so E plus minus are M plus minus square. Another interesting thing here is 

M plus and M minus both being the diagonal matrices, they commute. So, it does not 

matter whether we have M plus M minus or M minus M plus, they will give us the same 

result. Now, let us consider the measurement setup. 
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We have a measurement setup box. The input state comes here. Output goes here, this is 

plus and this is minus. The output state here is M plus psi proportional to M plus psi and 

here it is M minus psi. The probability of this p plus is the expectation value of M plus 

dagger M plus psi and similarly p minus is psi M minus dagger M minus, right. We can 



see another interesting thing, we can see is M plus M minus is 1 minus lambda square 

over 2 times identity and that is same as M minus M plus. 

So what does it mean that if we have a system going in the experimental setup? And the 

system comes out after giving a click. And then we perform the same measurement setup. 

This was the measurement setup M. Let us call it M. The same measurement setup we 

pass it through again. Then again it will have plus, minus, plus, minus. 

The state here was M plus psi a normalized state and here it was M minus psi, state here 

is M plus square psi M minus M plus psi M plus M minus psi and M minus squares. But 

just now we saw that M plus M minus and M minus M plus they are proportional to 

identity so this acting on psi will give us the state psi back. So, these are the state psi. 

This will happen with the probability one minus lambda square over two and here it will 

happen with one minus lambda square over two so total probability of getting the state 

back psi is one minus lambda square. So, probability of retrieval is 1 minus lambda 

square. So, we start the state psi, doesn't matter what state it is, as long as it is a qubit 

state. We perform measurement in the chosen measurement basis, measurement 

operators, then we get either plus click or minus click. 
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We expose the system again to the same measurement and then we get M plus square, M 

plus M minus, M minus M plus and M minus square, operators acting on the initial state. 

Two of them will give us the state back, the original state psi. And the probability of this 

happening is 1 minus lambda square. So, in that way, we can reverse the measurement 

and we can retrieve the system back. Now, can we use it in some way? 

Now, first of all, let us say that if we simplify it, we have a state going in. We have 

measurement setup we get, in the same arm, we get either plus or minus outcome, we 

send another measurement setup and another measurement setup and let us say we do it 



few number of times, then the output state is proportional to product over i M i from 1 to 

q acting on psi, that will be the output state and then i Mis, let us say where si where si is 

from the set plus or minus, so is measurement outcome is either plus or minus. And the 

probability of retrieving the state in this case because all the M plus and M minus 

commute. So, it is just a matter of being the number of M plus equal to M minus. Number 

of M plus equals number of M minus in this set will imply that we have retrieved the 

state psi back. 
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Probability of that happening is the number of times this thing can happen that is the q 

choose q over 2 times the probability of this thing happening which is 1 minus lambda 

square to the power q over 2. So, total will be q factorial over q over 2 factorial square 

times 1 minus lambda square to the power q over 2. So, with this probability if it repeats 

the experiment q number of times then this is the probability that we will retrieve our 

original state back psi. Now how can we use it in any useful way. Let us say we have the 

measurement setup. And we say it goes up for plus measurement it goes down for minus 

measurement down up. We discard this, we go down, we go up, we discard the down one 

and this one is the state psi back. Now we can send this in the loop, so, we had psi here 

we perform measurement m we perform the same measurement again and with certain 

probability that is one minus lambda square we get the state psi back and we can put it in 

the loop again. 

If we can manage to do for some lucky particles this whole measurement n times with the 

same particle, then this must be equal to having one particle going in the measurement 

setup getting us two outcomes and another particle going in getting the two outcomes, 

another particle going in getting the two outcomes and with n particle we repeat this 

measurement. So, one particle going through this setup should be equivalent to n particle 

going through the measurement setup. Of course, we can only consider the result at these 



points. So, we calculate the number of clicks in the N plus and number of clicks in the N 

minus at this point and then the second phase of this measurement is to retrieve the state 

again. So, the probability of getting plus should be N plus over N and probability of 

getting minus should be N minus over N and these are the expectation value of E plus 

and E minus. 
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And from here we can calculate all the expectation values and stuff like that of the 

operators, we can estimate the state. Whatever we want to do, we need the expectation 

value of the POBM elements, the effects. And this click n plus and n minus will give us 

that expectation value. If we are given let us say an ensemble of quantum system and 

they are in the state identity over 2. And we have been given additional information that 

either they are prepared in 01 basis or in plus minus basis. 

That is either in the eigen basis of sigma z or in the eigen basis of sigma x. So, either the 

state identity over 2 is 0 0 plus 1 1 over 2 or it is plus plus plus minus minus over 2. Now 

can we figure out whether the preparation basis was 0 1 or plus minus. What we need to 

do is we take particles from this ensemble and send through this setup, we set one particle 

we see N plus clicks N minus clicks, we retrieve the state we again do it so some particle 

will just go through this setup once and they will come out by getting in these two arms. 

Some particle will go in the second round, some particle will go in third round and with 

probability given by the number we calculated earlier, we will get some particle going 

through this circle n number of times. When N is large enough, then we calculate N plus 

and N minus probabilities, numbers and from there the p plus and p minus probabilities 

and from there we can calculate the expectation value of E plus and E minus. Expectation 

value of E plus minus in the state 0 that is 0 E plus minus 0 will come out to be 1 plus 

minus lambda over 2. 
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So, for E plus the expectation value of E plus in a 0 state is 1 plus lambda over 2 and 

expectation value of E minus is 1 minus lambda over 2. E plus minus in state 1 is also the 

same just with the different signs. But E plus minus for the state plus minus is actually 

half. So, the expectation value does not matter whether we are in the states plus or minus, 

the expectation value is always half. So, these are the expectation value, these are the 

probabilities of plus minus in the state 0, probability of plus minus for the state 1 and 

probability of plus minus for the state plus minus. 

But we are doing a stochastic process here, we have n number of events happening and 

we get N plus and N minus clicks. So, when N is very, very large, then N plus minus over 

N will tend to p plus minus but for small N it will not be exactly equal to p plus minus 

but it will be a Gaussian distribution around this mean value of p plus minus. It means for 

0 and 1 state the probability distribution or this expectation values will look like this for 

this is half this is half plus lambda and this is half minus lambda over 2. So, now, if we 

had very, very large N, then we will get exactly here the expectation values. But if we 

have small N, then it will fall on this curve, for 0 and 1. 
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We do not care whether it was for 0 or 1, but this one will be for 0 and this one will be for 

1 when we are doing E plus and the other way when it is E minus. So, that is fine. For 

plus minus state, this graph looks entirely different. It will be centered around half. So, 

this striking difference between the probability distribution of 0, 1 and plus minus can be 

used to estimate the preparation basis of the input state, which was i by 2. 

So, what we have to do is we send it to send the particles of the ensemble one by one 

through the experimental setup. And then we wait for some particles to go through the 

loop N number of times where N is large enough, we take the probabilities or N plus 

minus from there, and we divide them with N and we repeat this experiment many, many 

times. We will get a set of N plus, we will get a set of N minus and then we plot the 

frequency of those N plus and N minus divided by N normalized with N on a graph. If 

the graph looks like this bimodal distribution, then we know the preparation basis was 0, 

1. When it is a unimodal distribution, then it was plus minus state. 
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In that way, it seems like we can distinguish the preparation basis. But quantum 

mechanics says that once we prepare a quantum system, we cannot distinguish the 

preparation basis. Density matrix is all the information we have. We cannot have the 

information about the preparation basis. We discuss this point when we are discussing 

about the preparation basis and decomposition of a mixed state into a mixture of pure 

states. 

Once the density matrix is constructed there is no way to retrieve the information about 

the quantum system but here it seems like we have a method to retrieve the information 

so let us see if it holds. Let us consider another scenario, we have two qubits they are far 

apart and they are in entangled state, the one qubit is in Alice's lab and other qubit is in 



Bob's lab. Let us say the state of these two qubits is 0, 0 plus 1, 1 over root 2. Interesting 

thing is if Alice performs measurement in 0, 1 basis in her lab on this, on her qubit and 

she gets 0 state, 0 outcome, Bob will also get 0 outcome if he performs measurement in 

sigma, in 0, 1 basis. If Alice get 1, Bob will also get 1. If Alice perform measurement in 

plus minus basis and she gets plus, if Bob also performs in plus minus basis and Bob 

gets, then Bob will also get plus. 

If Alice gets minus, Bob will also get minus. This is the property of this entangled state, 

that if you are performing measurement in 0, 1 basis in both the labs, then the results will 

be identical. If you perform measurement in plus minus basis, then also results will be 

identical. So, this is the eigen basis of sigma z, this is the eigen basis of sigma x. If both 

perform measurement in sigma z, the results are identical. If both perform measurement 

in sigma x, results are identical. 
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They are far apart, they can be as far apart as possible, entanglement will survive, if there 

is a way to distribute entanglement between these two parties. So, if let us say Alex wants 

to send some information to Bob without communicating over the classical network then 

what they can do is let us see if she can send one bit of information then that one bit can 

be logical bit zero or logical bit one. It can be outcome of a match, cricket match, or it 

can be an outcome of a result of a voting of some type. So the protocol they can follow, 

which is pre-decided, that if the measurement is done in sigma z, then it would mean that 

the logical bit Alice is trying to transmit to Bob is zero. If the measurement is done in 

sigma x, then the logical bit Alice is trying to transmit to Bob is one. The measurement in 

sigma z implies zero, measurement in sigma x implies one. 



When the measurement is performed in sigma z, Alice will get answer randomly, the 

outcomes will be randomly zeros and ones. So, her average state on Alice side will be 

identity over two. This is in the Alice lab, and Bob's slab also it will be identity over two 

but this identity will be zero outer product zero, plus one out of product one over two. So, 

is in the case of Bob's lab. If the measurement is performed in sigma x basis then the 

identity will be plus plus plus minus minus over two and Bob will also have the same 

state without even Bob knowing. Just because Alice performed measurement in sigma x, 

Bob state will be a mixture of plus and minus. 

If the Alice performed measurement in sigma z, then the Bob state will be a mixture of 0 

and 1. So, now after Alice has performed measurement, Bob has an ensemble of particles, 

quantum systems, which where the average state is identity over 2, but it can be either a 

mixture of 0 and 1 or a mixture of plus and minus. This is exactly the scenario we 

discussed just now in the previous section, where the Bob's task is to find whether the 

preparation basis was 0, 1 or plus minus. And Bob can perform this whole algorithm, 

whole protocol and see whether the distribution he gets is the bimodal or ordinary model 

and accordingly he can infer whether the measurement was performed in sigma z or 

sigma x and the bit was transmitted was 0 or 1, the value of the bit. In that way, Alice can 

instantaneously transmit one bit of information to Bob over arbitrary distances. 
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This is in conflict with one very fundamental principle and that is the superluminal 

communication. Nothing can travel, no message can travel faster than the speed of light. 

But it seems like from this protocol that is violated. There are certain things which we 

cannot violate and superluminal communication or causality is one such thing. So, there 

must be something wrong with this protocol. 

The reason for this scheme to show this kind of contradicting, this kind of worrisome 

results can be explained as follows. Let us consider the experimental setup again. 



Operators M plus minus, this is plus and minus and we send the state psi in and the 

output is M plus psi and M minus psi. So, let us recall that our effects E plus minus 1 

over 2 identity plus minus lambda sigma z. Our aim in this experimental setup is to get 

the information of 0 state and 1 state, which correspond to lambda tending to 1. 

So when lambda tends to 1, when lambda is equal to 1, then E plus minus are 00 and 11 

projectors. In that case, we get this is the strongest measurement, this is the most perfect 

measurement we can have. And when we do not have such strong lambda, when we do 

not want to have very large lambda, that is lambda tending to 1, in that case, we still want 

some information about the 0 and 1. But not exactly, but some approximate information. 

What I mean by information is the probability of 0 and probability of 1 or probability of 

something close to 0 and something close to 1, which is possible when lambda is 1. 

But when lambda is not 0, then we do not get 0 and 1, we get 0 tilde state and 1 tilde 

state, where 0 tilde is defined as M plus acting on psi or let me say proportionally because 

it is not normalized and 1 tilde state is defined as M minus. Since lambda is not, if this 

lambda is less than 1, so it is not equal to 1, then most likely 0 and 1 inner product is not 

0. So, they are not orthogonal. Unlike in the earlier case where 0 and 1 were orthogonal. 

So, we can write 0 tilde as some coefficient a times 0 plus some coefficient b times 1. 

Similarly, we can write 1 tilde as they are not normalized, so a and b did not add up to 1. 

c times 0 plus d times 1. Since they are not orthogonal and they are two-dimensional 

states, so we can decompose them in, we can expand them in 0 and 1 basis and a, b, c and 

d are some coefficients yet to be determined. We want information about 0 from 0 tilde 

state, but 0 contains one state also. So, this is what will give us false positive. So, 

sometimes we get a click in zero but there was no zero it was one actually and similarly 

this term here will give us the false positive and these are the terms which make possible 

that when we in for the first measurement we have tilde and the second measurement we 

have one zero tilde and we have one tilde. So these are the states which gives a false 

positive to start with and these are the states which makes the reversal of the 

measurement possible. 
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So, these are the terms like the 1 in 0 and 0 in 1 tilde. These are the terms which are 

making the reversal of the measurement possible. So, that we can use the same system 

again because we are getting the state psi back. But these are also the terms which makes 

which dilutes our measurement outcome. Why do we need large number of 

measurements to get the same amount of information with weak measurement as we need 

for stronger measurements because these kinds of false positives dilute our results. 
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And these scenarios where the measurement reversal happen contains no information 

about the system at all. But let me repeat it again. Since our measurement is weak, the 

outcome we have 0 tilde and 1 tilde. They are not orthogonal. They should be orthogonal 

and they will be orthogonal when lambda tends to 1. 

Then 0 tilde will converge to 0 and 1 tilde will converge to 1. But when it is weak, then 0 

tilde has 0 and 1 and 1 tilde has 0 and 1. So the presence of state 1 in 0 tilde is what is 

making the measurement reversal possible. Similarly, presence of 0 in 1 tilde is making 

the measurement reversal possible. But also 0 in 1 and 1 in 0 tilde is what is causing the 

false positive, is causing a click when there should not be any click. 

Hence, we can claim that the scenarios in which the measurement reversal happened 

contains no information about the system or the state of the system. So, those cases 

cannot be used to infer any information about the system. 


