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Our next and the last postulate is about measurement. So far, we have seen that states are 

the vectors in the Hilbert space, the observables are the Hermitian operators, the 

dynamics are given by Schrodinger equation, which is kind of related to the wave 

equation. So far, whatever we have studied, whatever the property we have seen or we 

will see, for example, the superposition of states, the entanglement which comes with the 

superposition of states and some such properties, they can be seen in the classical optics. 

Classical waves also have superposition properties. 

If we have more than one degree of freedom for a wave, we can probably see the 

entanglement properties also. What makes quantum mechanics really special is the 

measurement postulate. So, measurement postulate is the most striking thing which gives 

us all the advantages and all the mysteries in the quantum mechanics. We see the 

quantum key distribution gives us like really absolute security in the communication 

because of the measurement postulate. We have quantum advantage because of 

entanglement, but measurement also plays a very significant role here. 

Let us say we have a quantum system in the state |ψ⟩  and we are performing the 

measurement of an observable A given by the eigenvalue an and eigenvectors, |𝑎𝑛⟩. So, 

we have a setup, measurement setup. Measurement setups do not look like this how I am 

drawing, but this is just a conceptual representation. In this setup, the state |ψ⟩ goes in, it 

means the quantum particle in the state |ψ⟩  goes in. So, we may or may not know what is 

the state that is irrelevant, but the experimental setup is designed to perform the 

measurement of the observable A. Then the outcomes will be a1, a2, a3 and so on all the 

eigenvalues, whatever observable we have in quantum mechanics when we perform 

measurement then eigenvalues will be what we will observe in the lab, and they will 

occur with some probability, p1, p2, p3, p4. 

In the sense that if we send one quantum particle, it can click on any of these outcomes. It 

can fall on any of these outcomes. And if we repeat this whole thing N number of times 



where N is sufficiently large, then it will click in the first one with N1 number of times it 

will click in the first one, N2 number of times it will click in the second one and so on. 

And the probability p1 will be close to N1 over N, N2 over N. So, let me repeat. 
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We have an experimental setup which is designed to perform measurement on the 

observable A. Then we send the quantum systems identically prepared in the state |ψ⟩, N 

number of quantum systems. And we send them one by one through this setup and they 

will give us clicks over these outcomes. And the probability of these clicks is given by 

the N1 over N. So, the particle reached the outcome a1, N1 number of times. The 

probability p1 is N1 over N. But what is, how is this probability p related to |ψ⟩ and A? 

So, the probability of outcome an is given by the measurement of the eigenstate of the 

observable A as |⟨an|ψ⟩|2. 

So, the probability of the outcome, p(an) is given by |⟨an|ψ⟩|2. This is called the Born 

rule of probability. This is the first axiom in this is the first sub axiom of the 

measurement axiom measurement postulate that the probability in an experiment, the 

probability of the outcome an is given by the corresponding eigenvectors and |ψ⟩ in a 

product mod square, now we can see that ∑ 𝑝(𝑎𝑛)𝑛  is ∑ |⟨an|ψ⟩|2
𝑛 . We can write it as 

∑ ⟨ψ|an⟩⟨an|ψ⟩𝑛 . And this is ∑ ⟨ψ|[|an⟩⟨an|]|ψ⟩𝑛 . 

And since |𝑎𝑛⟩ are the normalized eigenvectors of the Hermitian operator A, they add up 

to identity. So, if we take the summation inside, we get  ⟨ψ|{∑ |an⟩n ⟨an|}|ψ⟩ and this is 

1. So, if we add all the probabilities for all the outcomes, we get one. This is, and this is 

what any probability distribution should satisfy. Next is the expectation value, the 



average value of the observable A, ⟨A⟩. And average value of an observable in classical 

statistical mechanics can be written as ∑ an 𝑝(𝑎𝑛)𝑛 . 

(Refer slide time: 5:22) 

 

So, this is, in the statistical mechanics, this is the probability of an observable where an is 

the value of the observable and pn is the probability of that outcome. Now, if we use the 

Born probability rule for p(an), then we get ∑ an|⟨ψ|an⟩|2
𝑛 , |⟨ψ|an⟩|2 and |⟨an|ψ⟩|2 are 

same things. And this we can write as ∑ an⟨ψ|an⟩⟨an|ψ⟩𝑛 . We can take summation and 

an inside the, we can rewrite it like ⟨ψ|[∑ an|an⟩n ⟨an|]|ψ⟩, and ∑ an|an⟩n ⟨an| is the 

spectral decomposition of the observable A and we can replace it with A. So, we get 

⟨ψ|𝐴|ψ⟩ as the expectation value. So, what we have done is we have taken the classical 

definition of the average of a measurable quantity and that is the value of the quantity 

times the probability of that outcome. 

And for the probability, we have substituted the Born rule of probability for quantum 

systems and we got an expression for the average or expectation value of the observable 

in terms of the state of the system |𝜓⟩ and the operator A. So, this is the expression for 

the expectation value and with this derivation you can see that the definition of this 

expectation value is inspired from the classical statistical average of any quantity. Of 

course, we can generalize this definition to find the expectation value of A2. So, to 

calculate this thing first we see that A2 is nothing but ∑ an
2

𝑛 |an⟩⟨an|. This can be seen by 

taking the square and realizing that |an⟩ and |an
′ ⟩  are orthogonal vectors, so the average, 

the expectation of A2 square will be ⟨𝐴2⟩ = ⟨ψ|𝐴2|𝜓⟩, and that will be ∑ an
2  𝑝(𝑎𝑛)𝑛 , and 

from here we can calculate something called the variance of A, ⟨∆𝐴2⟩ that will be ⟨𝐴2⟩ −

⟨𝐴⟩2  or that is ⟨(𝐴 − ⟨A⟩)2⟩, and that will be ∑ an
2  𝑝(𝑎𝑛)𝑛 − (∑ 𝑎𝑛𝑝(𝑎𝑛)𝑛 )2 , so we'll 

leave it at this thing and we will use this expression for the variance.  
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The second part of the measurement postulate is the collapse, wave function collapse So 

we have the experimental setup, A. We have state |ψ⟩ going in, quantum systems in the 

state |ψ⟩ identically prepared, one by one we are sending them in the setup and we have 

clicks in certain outcome, a1, an, with probability pn given by the Born rule. What 

happens to the quantum system after the measurement? So, the force postulate, the 

measurement postulate or the collapse postulate of the measurement postulate states that 

the state of the system after the measurement collapses to the eigenvector of the 

observable corresponding to the outcome. That is, if |ψ⟩ goes in and we get an outcome, 

then the state of the system after the measurement will be |an⟩. 

So, in this way, the process of performing measurement on the quantum system destroys 

or erases the information of the original state and replace it with the new state that is the 

eigen state of the observable. So, in that way once we get a click in certain outcome, once 

we get an outcome the in the quantum system has lost all the information about its 

original state so this state cannot be used to further perform measurement on it in order to 

get more information out of it because there is no information left in it other than that it's 

in the |an⟩ eigen state of the observable A. In that way, when we want to perform 

measurement on a quantum system, we consider a large ensemble of quantum systems, 

each of them or every one of them is prepared in the same state |ψ⟩ and we send those 

states |ψ⟩  one by one through this experimental setup and we collect the statistics of the 

outcomes. And from those statistics, we can calculate the expectation value of the 

observable and that can be used for whatever processing we want to do. But we cannot 

use the same, we cannot infer any information from a single quantum system because 

once we send single quantum system in the experimental setup it collapses to one of the 



eigen states of the observable and it has lost all the information about it and we cannot 

use it for extracting any more information. 

So, in that way, we cannot get any information out of a single quantum system because it 

will just give us one click. It will not give us any probability. It will not give us any 

information about the state |ψ⟩. Hence, it is not possible to do any meaningful thing with 

a single quantum system. So, this was the detailed explanation or discussion about the 

four postulates of quantum mechanics. In this course, we will be coming back to these 

postulates again and again and we will be going in more and more details and find good 

applications or interesting applications of these postulates. 

Our next topic is Heisenberg Uncertainty Principle. And this shows a striking difference 

between classical and quantum world. So, in classical picture, whenever we have, we 

perform a measurement on a system A and we get certain uncertainty, certain randomness 

in that system. This randomness does not affect the randomness of any other system 

under the situation, but that is not true in quantum mechanics. The meaning the full 

meaning of the statement will be clear soon but we'll start here with the following let us 

say we have two observables A and B, they are Hermitian observables, they are 

observable so they must be Hermitian so A has its own spectrum an and eigenvectors 

|an⟩, B has its own spectrum and eigenvectors so the uncertainty in A that is ⟨∆𝐴2⟩. 

So, we have a quantum system with these two observables, we have quantum system with 

these two observables and the state of system is |ψ⟩. So, the uncertainty in A is ⟨∆𝐴2⟩ 

that can be written as ⟨ψ|𝐴2|ψ⟩ − (⟨ψ|𝐴|ψ⟩)2, or it can be written as ⟨ψ|(𝐴 − ⟨A⟩)2|ψ⟩ 

that is the expression for the uncertainty in A, similarly we have uncertainty in B, ⟨∆𝐵2⟩ 

and that can also be written as ⟨ψ|(𝐵 − ⟨B⟩)2|ψ⟩ . Now, the Heisenberg uncertainty 

principle states that ⟨∆𝐴2⟩ ⟨∆𝐵2⟩ will always be greater than or equal to 1 over 4 times 

|⟨[𝐴, 𝐵]⟩|2, so what what does it say is if we have two observables A and B which do not 

commute, if we have such observable which do not commute then the uncertainty in A 

times uncertainty in B is lower bounded by the 1 by 4 times the uncertainty in the 

commutator of A,B.  So, this is a very strong statement and it comes only because of the 

quantum mechanics because in classical world we do not have observables which do not 

commute. 
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Every observable commute in classical world. In that way, the commutation is always 

zero. So, there is no lower bound on the uncertainties of the two observables. Just to give 

you an example, we have �̂�, the position operator and the �̂�, the momentum operator. 

From our quantum mechanics, we know the commutator of �̂� and �̂�, [�̂�, �̂�] is iℏ. So, then 

our ⟨∆𝑥2⟩ ⟨∆𝑝2⟩ ≥ ℏ2/4. This is what it means. 

So, it means in a quantum system, the uncertainty in �̂� and �̂� cannot be product of those 

two, cannot be less than ℏ2/4. Or, in other way, if we perform measurement in x, then we 

get very, very precise value without any uncertainty. Uncertainty tending to 0, that would 

mean that there will be infinite uncertainty in the momentum. So, the proof of this 

theorem goes as follows. Let us go back to ⟨∆𝐴2⟩, that is ⟨ψ|(𝐴 − ⟨A⟩)2|ψ⟩. 

From here, let us define |𝜓𝐴⟩, some vector which is not normalized as (𝐴 − ⟨A⟩)|𝜓⟩. We 

know it is not normalized but it is some vector and we will keep it like this. From here we 

can write ⟨∆𝐴2⟩ as ⟨𝜓𝐴|𝜓𝐴⟩. Similarly, we can write ⟨∆𝐵2⟩ as ⟨𝜓𝐵|𝜓𝐵⟩. It means that 

⟨∆𝐴2⟩⟨∆𝐵2⟩ = ⟨𝜓𝐴|𝜓𝐴⟩⟨𝜓𝐵|𝜓𝐵⟩. Now, I would like to recall the recall an inequality and 

that is called Schwarz inequality, which says that if we have vectors |𝜓⟩ and |ϕ⟩, product 

of their norm will always be greater than or equal to |⟨𝜓|ϕ⟩|2. Let me repeat, if you have 

two vectors |𝜓⟩ and |ϕ⟩, then the product of their norm will always be greater than or 

equal to the mod square of their inner product. 
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That we have proven in our mathematical supplementary lectures. So, we use this 

Schwarz inequality in the previous equation and we get ⟨∆𝐴2⟩⟨∆𝐵2⟩ , which is 

⟨𝜓𝐴|𝜓𝐴⟩⟨𝜓𝐵|𝜓𝐵⟩ . This will be greater than or equal to |⟨𝜓𝐴|𝜓𝐵⟩|2 . So, this is one 

statement. Now, consider ⟨𝜓𝐴|𝜓𝐵⟩, that will be ⟨ψ|(𝐴 − Ā)(𝐵 − �̅�)|ψ⟩. Let me put Ā for 

the expectation value and (𝐵 − �̅�) so that it's easier to write. 

Now we have two operators (𝐴 − Ā) and (𝐵 − �̅�). So let us call them X and Y. So we 

are given X Y product, which we can write as ([X,Y]+{X,Y})/2, that we can check [X,Y] 

is XY-YX, plus {X,Y} is XY+YX. It means (𝐴 − Ā)(𝐵 − �̅�) can be written as half times 

commutator of (𝐴 − Ā) with (𝐵 − �̅�). Ā and �̅� are numbers, so we are left with only A 

and B plus anti-commutator of (𝐴 − Ā) and (𝐵 − �̅�). 

(Refer slide time: 22:14) 

 

 

This implies that our ⟨𝜓𝐴|𝜓𝐵⟩ will be half expectation value of commutator of A, B plus 

expectation value of anti-commutator of A, B. Now, 𝜓𝐴 and 𝜓𝐵 is a complex number. A 



is Hermitian, so is B. It means commutator of A, B, which is AB-BA is – ([A, B])†, you 

can check that the commutator if we take the dagger of the commutator, commutator is 

the operator but AB-BA is some matrix if A and B are some matrices and if A and B are 

both Hermitian, then the commutator is anti-Hermitian. Anti-Hermitian is nothing but i 

times Hermitian, but the important thing is the expectation value of the anti-commutator 

is always imaginary and the expectation value of A commutator anti commutator is 

always real. 

So, we can write ⟨𝜓𝐴|𝜓𝐵⟩ as half times some real part plus i times imaginary part. So we 

can say |⟨𝜓𝐴|𝜓𝐵⟩|2  will always be greater than or equal to the imaginary part mod 

square, that is, ¼ |⟨[𝐴, 𝐵]⟩|2and from our earlier equation we know that the product of the 

uncertainty ⟨∆𝐴2⟩ ⟨∆𝐵2⟩ is greater than |⟨𝜓𝐴|𝜓𝐵⟩|2which is greater than 1/2 |⟨[𝐴, 𝐵]⟩|2 

and this is the proof of the Heisenberg uncertainty principle which shows that if you have 

two observables which do not commute then the product of their uncertainty is lower 

bounded by their commutator, the expectation of their commutator. This is a technical 

statement. What it means is if you cannot measure two non-commuting observables 

simultaneously with perfection. So, that is what it says that if you have two non-

commuting observables, you cannot measure them simultaneously with arbitrary 

accuracy. 
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One interesting thing which I like to point out here, in deriving the whole Heisenberg 

uncertainty principle, we have never used the collapse postulate of the quantum 

mechanics. We have only used the expectation value, we have used the commutation 

relation. The expectation values can be derived without invoking the collapse postulate, 

we just need the Born rule of probability. 


