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Measurements: Introduction 

 

Our topic in this lecture is the measurement. We have been mentioning measurements in 

some of the other contexts in several lectures earlier but this will be one full formal 

discussion about measurements. So, here we will be, there are several kind of 

measurements one which we are familiar with which is in the fourth postulate of quantum 

mechanics that's the projective measurements. They are also called von Neumann 

measurements. So, these are the measurements we have been talking about which gives 

you the Born rule, which gives you the state collapse postulate and the state after the 

measurement, those kind of things. This is the measurement which we are familiar with 

which comes in the fourth axiom of the quantum mechanics. This talks about the born 

probability rule of the measurement and the collapse of the wave function after the 

measurement. 

So, all the other kind of measurements which we will be discussing will be related to the 

projective measurement in some other context, but they are more general, so they can be 

treated in a slightly more general way. So, the second one is like generalized 

measurement. So, in these generalized measurements, we will talk about many 

measurements like indirect measurement where we will not perform the measurement 

directly on the quantum system, but we will make it interact with another quantum 

system and perform measurement on the other one. So, in that way we are not directly 

measuring the quantum system under consideration, but we are measuring another 

quantum system which we have coupled with the desired quantum system. Then there are 

POVMs, they are called positive operator valued measurements and they contain 

mathematical structure of all the possible measurements on a quantum system. 
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Then we will have coarse grain measurements and then we will have weak 

measurements. We may not discuss all this kind of measurement, but they will be surely 

touched upon in the lecture. So, let us start with the von-Neumann measurement. So, we 

have an observable A, which is a Hermitian operator. And it has eigenvalues ai and 

eigenvector ai, such that A ai equals ai, ai. 

This is its eigenvalue equation. Also, observable must be the Hermitian operators. The 

property about Hermitian operators is their eigenvalues are always real and their 

eigenvectors form an orthonormal basis. We are choosing the eigenvector to be 

normalized, although the eigenvalue equation does not care about the normalizations but 

we choose them to have norm one, then, one, if we have a quantum system in the state psi 

then the probability of getting the is outcome ai, the probability of getting ai is given by 

the Born probability rule which is psi ai mod square. This is the Born rule. Second, once 

we have ai outcome then the state psi collapses to the eigen state ai, this is the collapse 

postulate. 
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So, the projective measurement is that if we want to observe if you want to measure an 

observable A where a small ai's are the eigenvalues and vector ai's are the eigenvectors of 



the observable A, then the probability of the i-th outcome is given by the Born rule which 

is psi inner product ai mod square. And after the measurement, the state of the quantum 

system collapses to the outcome eigenstate ai. We can generalize this treatment in the 

following way. Let us define a projector Pn. So, a projector is an operator such that Pn 

square equals Pn. 

This is the only definition of a projector. So, any operator P, if it satisfies P square equals 

P, then it must be a projector. So, for example, we are defining Pn to be an outer product 

an. It means Pn square, which is an, an, an, an, this is a scalar here, which is inner product 

of an with itself. And since an is normalized, this is 1. 

We get an outer product an and this is Pn. Therefore, Pn equals an outer product an is a 

valid projector. Now, we can reformulate the two statements about the projective 

measurement that is Born rule that p of an psi an mod square. This can be written now as 

psi Pn psi. That becomes the new Born rule. Both are the same statement. 
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We can see that when we substitute Pn, we get an outer product an, Psi, which is same as 

Psi an inner product mod squared. So, we can write the Born rule in terms of the 

projector Pn. And the state collapse, Psi going to the projected state becomes Pn acting 

on Psi divided by P of an. So, this becomes the collapse postulate. So, in this way by 

refining the projector Pn we can write both the statements of the projective measurement. 
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If we have not a pure state but a mixed state rho which is given by sum over n lambda n 

phi n outer product phi n. If you have a density matrix rho, then the probability of getting 

mth outcome will be sum over n lambda n am phi n phi n am sum over n lambda n the 

Born rule for each of the phi n am mod square and the mixture, the statistical average 

over the mixture. This is how the probability of m-th outcome, which is what we are just 

writing, short form as p m, we call it p of am, is given by this. Now, in terms of 

projectors, it becomes sum over n, lambda n, phi n, Pm, phi n. And if you remember the 

cyclic property of the trace, this whole thing can be written as trace of Pm rho. This also 

can be written as expectation value of Pm. 
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Similarly, here also the probability this can be written as expectation value of Pm. Pm 

here. So, the probability of the outcome is the expectation value of the projector Pm. And 

the state collapse rho going to rho tilde after measurement becomes Pm rho Pm divided 

by p of, small p of am and that's nothing but am am. So, in that way by defining the 

projectors, we can reformulate the projective measurements in a much simpler, much 

concise way. But our definition of projector was P square equals P. This is the definition 

of projector. Then if we take, let us say, a1 outer product a1 plus a2 outer product a2, and 

let us call it P, then P square, since a1 and a2 are orthogonal, will also be a1 outer product 

a1 plus a2 outer product a2. 
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So, this is also a valid projector. So, it means we can have a measurement setup where we 

have state coming in, rho, and outputs are there. And there can be scenarios where we 

cannot distinguish between, let us say, a1 and a2. So, both of those outcomes give you the 

same, both of those cases will give you the same outcome. Similarly, you can have a 

bunch of other measurements which will give you one click.  
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So, it means you will have p1, which is a sum of many many sum over n1 an1 an1 and 

then you have other projector p2, which is sum over n2 an2 an2 and so on. You can have 

a set of many pn's which are not rank 1 projectors but more than rank 1 projector. And so, 

you can have a set of many pn's which are not rank 1 projectors but more than rank 1 

projector. They can be rank 1 or more projectors. These kinds of measurements are called 

coarse grain measurements. In some scenarios where we cannot distinguish between 

many outcomes, then we see this kind of coarse grain measurement. 

For example, when we have two photons coming in with different polarizations, when we 

merge them on a beam splitter, then the output can be either a symmetric state or an 

antisymmetric state of the two photons in the polarization ratio. So, they are called singlet 

and triplet. In a linear optical experiment, we cannot distinguish between the singlet and 

triplet generally, unless we put some extra effort. So, in those cases, the singlet state, 

which is given by the horizontal, vertical, minus vertical, horizontal, the two photons 



being in different polarization, divided by root 2. This is antisymmetric state in the 

sample, if we interchange the two photons, we get the negative sign out. 

And then we have triplet, where we have both photon in H or both photon in V or one in 

H other in V plus one in V other in H. This is the symmetric combination of the different 

polarization. So, this is a singlet and this is a triplet and this is a singlet state. Singlet state 

is the anti-symmetric state and triplet state is the symmetric state. Since the phonons are 

bosonic in nature, so, in a linear optical experiment we cannot distinguish between these 

three states. So whenever we have any of this state we get the same click out and when 

we have this, we get another click so in that way we have one projector let's call this state 

as zero and this is one two and three state. 
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So, we have one projector P0, which is 0 outer product 0 and other projector P1, which 

will be 1 projector 1 plus 2 projector 2 plus 3 projector 3. So, in that way, we have some 

physical examples of when more than one orthogonal state being a part of a projector. So, 

in these cases, what happens to the Born probability? So, the Born probability P of n is 

still given by the expectation value of the nth projector. We do not care whether this 

projector Pn is rank 1 projector or rank 2 projector or rank 3 projector. 

What we mean by the rank is the number of non-zero eigenvalues. So, since Pn square is 

Pn, then the only eigenvalues it has are either 1 or 0 because the eigenvalues should 

satisfy the equation satisfied by the operator. So, Pn square minus Pn equals 0. So, only 0 

and 1 can satisfy this equation. Now, how many ones we have and how many zeros we 

have will tell us what is the rank of the projector. So, when we have p to be an outer 

product an then it's rank one. When we have more than this, then we have rank two, three 

and four depending on how many non-zero ones we have. So, while defining this Born 

rule, the general Born rule, we do not care what is the rank of the projector under 

consideration but the probability is given by the expectation value of pn, so if it is a pure 



state it becomes psi pn psi and if it is a mixed state, then it becomes trace of rho pn, this 

is for pure states and this is for mixed states. 

(Refer slide time: 14:03) 

 

Now the collapse postulate can be written as psi collapses to pn psi divided by root pn if 

it is a pure state and if it is a mixed state, rho goes to pn rho pn over root over pn. Till 

now in terms of the representation in terms of the expressions for the Born rule and the 

collapse state, there is no difference between rank 1 projector and rank 2 projector but or 

rank higher than projector, but one thing we have to be carefully is when pn is a rank 1 

projector then if pn is a rank 1 projector, then rho collapses to pn rho pn over small pn, 

which will be an outer product an. It means it's a pure state. It means rank one projectors 

project any density matrix rho to a pure state. But if it is rank more than one, let us say 

two, then we can write Pn to be an1 an1 plus an2. 
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Then rho collapses to Pn, rho Pn over Pn, which is not a pure state. It is actually a mixed 

state, generally. Of course, if there is no component of an2 or an1 in rho, then we can get 

pure state also or nothing. So, in that case, things will be different. But in general, for the 

projectors more than rank 1, the projected state will not be a pure state, it will be a mixed 

state. 
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Let us consider a set of projectors Pi, such that Pi Pj is pi delta ij. It means if i is not equal 

to j, then it is 0, the product is 0. If i is equal to j, then it is a projector. So, it is Pi square 

is Pi. And if sum over i Pi is identity, just let me remind you that identity is also a 

projector. It's a projector because identity squared is identity. So, identity is also a 

projector. And if some over i Pi is identity, then it's called informationally complete set. 

Set of projectors. So, this is a valid measurement basis. So, if you want to perform a 

complete measurement on the quantum system, we need to find one such set. One 

previous example of one regular example of such set is the set of the projector a i ai ,that 

will amount to the regular von-Neumann measurement. This is the regular projective 

measurement we have been talking about from the beginning of this course. Then other 

can be coarse-grain measurement where more than one projector combined, more than 

one projector combined to make rank more than one projector and then we get coarse-

grain measurement. One very trivial example is a set of just one element, which is 

identity, which is also a projector, which satisfy all the conditions given above. 
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So, this measurement will yield nothing. So, you have a state going in the setup and the 

state comes out. The probability of that happening is one and no information is captured 

about the system in this way. But this is a mathematically valid measurement. Next is 

measurement on composite system. Let us consider a bipartite system HA tensor HB. 

For the sake of ease, we assume both of them are the same dimensional system and same 

basis they have. So, an arbitrary state psi AB can be written as sum over i j alpha i j i 

tensor j. An arbitrary state can be written in this form where i and j are the computational 

basis. It's a two, it's a bipartite system, it's a composite system, so we can think of it like 

there are two quantum systems A and B and they are in some joint state. This is just 

artistic representation of two entangled or joint quantum system. But they can exist 

physically apart from each other. So, this can be in one lab and this can be in another lab. 

So, there is a possibility that we perform measurement on subsystem B, but not on 

subsystem A. So, how do we represent such scenarios where we have a composite system 

and we perform measurement only on a subsystem of it. 
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So, partial measurements, let us call it so let us say the measurement basis we are 

choosing on subsystem B is phi j basis. It's the orthonormal basis, it's a rank one 

projector. So, it will belong to rank one projector. So when we perform measurement on 

subsystem B, so the projectors we can think of a, we can say that there are Pi projectors 

or Pj projectors which are given by phi j outer product phi j. So, in general the joint 

measurement of A and B will be the measurement on subsystem A and measurement on 

subsystem B. Since we are not doing anything on A, the projector on A can be thought of 



as just identity projector on A and Pj's on B. So, this is the basis in which we will be 

performing measurements. The total basis will be identity tensor pj. We can see that sum 

over j identity tensor pj equals identity tensor sum over j Pj. 
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This is equal to identity tensor identity. So, this satisfies the criteria of the informationally 

complete basis in terms of projector. Next, we can see that identity tensor Pi times 

identity tensor Pj can be will be identity tensor Pi Pj which is identity tensor phi i phi i 

phi j phi j and these are orthonormal basis. So, if this is delta i j, it becomes identity 

tensor Pi delta j, so these set of projectors satisfy all the conditions of an informationally 

complete basis, so this is a valid measurement basis to perform on the subsystem, on the 

composite system AB. So, the measurement will yield psi AB going to after measurement 

identity tensor Pn on psi divided by root Pn where root Pn is the probability of the 

outcome that is given by psi identity tensor Pn. Now we can see that, let us call it Psi tilde 

which is the projected state will be 1 over root Pn sum over ij alpha ij and there is a let 

me write identity tensor Pn i tensor j. 
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This will be 1 over root Pn, sum over ij, alpha ij, i tensor, Pn is phi n, outer product phi n, 

j. It can be simplified, root Pn, sum over ij, alpha ij, we have phi n, j, and we can take this 

also and it is i tensor phi n. Now if we look at it carefully, this can be written as chi n chi 

n tensor phi n where chi n is 1 over root of p n sum over i j alpha i j phi n j and i this chi n 

is the state of the subsystem A And phi n is the state of the subsystem B after the 

measurement. So, from the subsystem B point of view, after the measurement, the state 

collapse to the eigenstate of the outcome, phi n, because phi n was the outcome we got. 

And in response, the state of the subsystem A also collapse to some state and that state is 

given by chi n which depends on the outcome of the subsystem A or subsystem B that is 

phi n and the coefficient, joint coefficient of A and B so measurement on B affects the 

outcome of A also. That is one thing that the measurement on AB affects the state of A 

and this is what is used in many of the quantum computation and information protocols. 
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The quantum teleportation is performed using this principle. Another interesting thing to 

notice here is after we perform measurement on subsystem A, the state type AB which 

was the initial state, does not matter what was initially the state, the outcome after 

measurement is the product state. This is a product state. Or in other words, it is a 

separable state, non-entangled. So, a measurement on subsystem A, a projective 

measurement rank one projective measurement on subsystem A yields a separable state 



between A and B. it destroys all the entanglement if there was any. We can generalize 

this result to the mixed state also but those are trivial exercises, I will recommend 

everyone to try those things at home. 

What will happen if what would have happened if our projector was a rank two 

projectors. It means Pn let us say was phi n1, phi n1 plus phi n2, phi n2. So, we want to 

explore the case when Pn is rank two projector instead of rank one projector. In that case, 

psi AB will go to psi tilde which is again given by one over root Pn, sum over ij alpha ij i 

tensor pnj. Now pnj is is phi n1 phi n1 j plus phi n2 phi n2 j. Let us call it p n1 j pi n1 just 

p r let us say r n2 j pi n2 and we can substitute it there, so our side delta will be 1 over 

root p n sum over i j alpha i j I tensor r n1j phi n1 plus r n2j phi n2. Now, the issue here is 

this state depends on both n which is n1 and n2 and j. We cannot separate this in terms of 

like in n and j index, we cannot write this state which is independent of j. So, in that way, 

we cannot write the whole state here as some chi tensor some phi n. Hence, this is an 

entangled state. 
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Unlike the rank 1 projector where we got a separable state, if the measurement is done in 

a coarse grain manner, then the resultant state need not be a separable state. In fact, in 

general, it will be an entangled state. So, this is the crucial difference between the rank 1 

and rank 2 projectors when they apply on a subsystem. Next, we will be discussing the 

indirect measurement. An indirect measurement consists of a system on which we want 

to perform the measurement. 

Let us represent the system with S. It's a Hilbert space HS and the initial state is rho S. 

And we want to perform measurement on rho S. To assist in the indirect measurement, 



we need a probe. Often, we call it ancilla A. The Hilbert space of the ancilla is HA. And 

the initial state is rho A. We will choose rho A according to our convenience so that we 

can make the measurement easily and in a more effective way. Next is the coupling or 

interaction between A and S. The interaction between any quantum system given by a 

unitary transformation, let us represent it by U. It is a unitary acting on HA and HS 

together in a joint manner. So, the total Hilbert space H is HA tensor HS. 
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So, the unitary U belongs to the set of operators setting on H. So, initially our total state 

rho is rho A tensor rho S. After the interaction rho tilde becomes U rho A tensor rho S U 

dagger. And after that, we perform measurement on the Ancilla. So, to perform 

measurement, let us say we perform projective measurements without complicating 

things. So, we choose the basis of the measurement to be n basis. So, this is the 

orthonormal basis in the Hilbert space of the ancilla. 
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When, in the case of nth outcome, we get the outcomes, the state of the system and 

ancilla collapses to the following state, pn tensor identity, U rho A tensor rho V, U 

dagger, pn tensor identity over the probability. We will talk about the probability pn in 

some time, but the projector pn is nothing but the projector over the state n. Let us say 

rho A, the ancilla state is a pure state given by psi, psi. In that case rho tilde n becomes pn 

tensor identity u psi psi tensor rho s u dagger p n tensor identity. If we replace p n with n 



n with n n and then we defined Kn to be n tensor identity, U  n tensor identity. Then this 

becomes the operator acting on the Hilbert space of the system. This is the Kraus 

operator. 
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We have discussed this thing in the completely positive maps. Then rho n tilde can be 

written as n out of product n tensor kn rho kn dagger. There was a probability Pn down 

there and there is a probability Pn. Then Pn becomes the trace of rho tilde n which is 

same as trace of kn rho kn dagger. So, this is the probability of the outcome or the 

measurement outcome and this is the state after collapse. What we have done is we have 

extended our system of interest the Hilbert space of the system HS to HS tensor HA or 

HA tensor HS. 
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So, we have converted a simple system into a composite system and after that we have 

utilized a unitary transformation U to create interaction between system and the ancilla. 

Following that, we have performed a von Neumann measurement on the ancilla and the 

effect of that can be seen on the system S in the following form that the state of the 

system rho s goes to Pn rho s Pn dagger over Pn upon measurement. This is a normalized 



state, so this is the the result of an indirect measurement on the quantum system on the 

quantum system S. This outcome happens with the probability Pn. So, the total average 

outcome state of the system can be written as sum over n Pn times Kn rho S Kn dagger 

over Pn will be n Kn rho S Kn dagger. 

This is the average outcome state after the complete measurement. K n's are called 

measurement operator. The trace of the outcome state should be always one because it's a 

valid state. This implies that, which remains exercise, which we have already done also 

that sum over n K n dagger K n should be identity. This is an additional condition over 

the measurement operators. Now, what we have done, what is the difference between the 

projective measurement and the indirect measurement? In the projective measurement, 

we had a set of projectors P n, such that sum over n, P n equals identity and Pi Pj equals 

Pi delta ij. 
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They are orthonormal. So, this is the projective measurement. In the indirect 

measurement, we have set of K n such that sum over n K n dagger K n equals identity 

and that is all. In the projective measurements, the probability Pn was given by 

expectation value of Pn and the state rho n was after the measurement was Pn rho Pn over 

Pn. In the indirect measurement, the probability Pn is given by K n rho K n dagger trace 

which also can be written as trace of K n dagger K n rho or expectation value of K n 

dagger K n and the state after collapse is given by K n rho K n dagger over K n. 
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In that way, there are certain differences in projective measurement and indirect 

measurement, but mathematically they are very much alike in spirit and we can see that 

the projective measurement is a is a subclass of the indirect measurement. We can choose 

K n's in such a way that they become projective measurement. Till now we have seen that 

given a unitary, which is the interaction between the ancilla and the system and the initial 

state of the ancilla and the measurement basis will yield a set of Kraus operators K n or 

measurement operators K n, which will give us the indirect measurements on a system, or 

generalized measurement on a system. The question can be asked, for a given set of 

measurement operator K n, can we find a unitary operator U, a state of the ancilla, initial 

state of the ancilla psi and the measurement basis n corresponding to K n. So, to answer 

this thing, we see that KN was defined as N tensor identity U psi tensor identity. 
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Let us say n is the computational value. It means vector n is defined as a vector of zeros 

with only one 1 at nth location. And let us say psi is the zero state. And we know that any 

arbitrary U which is acting on a composite system can be written as ij, i outer product j, 

tensor U ij where U ij are the operators acting on the system. Or in other way, we can 

write it as U00, U01, U02. U10, U11, U12, these are all operators. 



So, we have written U, capital U as the matrix of matrices. Then we can see that n U, n 

tensor identity, U 0 tensor identity is U n 0, which is by definition Kn. So, if we had a U, 

then the first column of vector, first column of operator is equal to the K n we have as 

measurement operators. So, for a given set of measurement operators, we can choose a U 

such that the first column is the column of the measurement operators, K 0, K 1 up to K n 

and rest of the matrix is, can be chosen arbitrarily in such a way, let us say the rest of the 

matrix is R, which you can choose R in such a way that U is a unitary. So, we say R, we 

choose in such a way U is unitary. 
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And this can always be done. So, there is a huge choice in terms of R for a given set of 

measurement operators K n, that U is a unitary and here, what we have assumed is the 

initial state of the system is, ancilla is zero and the measurement basis is the 

computational basis. Of course, if we change these things then U will also change but 

since our task is to find the simplest U possible, we will choose the simplest initial state 

and simplest basis, but if the given problem demands something else, then we can choose 

those also and our unitary matrix will also change. So, in that way for a given set of 

measurement operators K 0, k=K 1 up to K n, we can always construct a unitary U for the 

initial state 0 and the measurement basis n such that it gives you the indirect 

measurement. 

 


