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Today we will be discussing completely positive maps. This is in sequence, in 

continuation with the positive maps and stuff we have been studying so just to 

recapitulate a positive map, omega is something which takes positive operators to 

positive operators. So, rho is a positive operator it means its eigenvalues are positive 

semi-definite. We mean when we say positive, we can mean positive definite or positive 

semi-definite, it's a very small difference for us but in mathematics it can be a big 

difference, but we are not worried about that for the moment. So, rho is a positive 

operator so that eigenvalues are positive and rho is Hermitian and it will be mapped to 

another operator rho prime which has a similar property that its eigenvalues are positive 

and its Hermitian. So, a positive map is Hermitian as well as positivity preserving. Now 

what will happen if we apply this map omega which is a positive map on one subsystem, 

on of a larger system. So, if we are applying omega on subsystem B and nothing on 

subsystem A, so we can write it as i tensor omega i means applying nothing identity 

operation and if we apply it on a bipartite state rho AB, so rho AB is the state of a mixed 

state or pure state doesn't matter, it's the state of a of a bipartite system of a composite 

system. So, what will happen if we do that will it still be a positive map. So will omega 

still map positive operators to positive operators. So, the question is if identity tensor 

omega maps rho AB to rho AB prime, some other state of the same subsystem. 
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To see that, let us take example, let us say rho AB is in the separable space. It means rho 

AB can be written as sum over n, p n rho A n tensor rho B n, where p n are positive 

numbers such that they add up to 1. It means sum over n p n equals 1. and rho An is a 

positive operator, which represent a density matrix in a subsystem A and rho B n is a 

positive operator representing a density operator in subsystem B. So, when we apply the 

positive map omega on one side of rho AB on one subsystem of rho AB, then it will be it 

can be written as p n rho A n, means nothing on An tensor omega acting on rho B n. So, 

if omega is positive and it is positive then rho B n will be rho prime B n which are also 

positive operators. So, it means the transformed state rho tilde AB which is this here, is 

nothing but sum over n p n rho A n tensor rho B n prime. 
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It's a state rho A n rho prime B n, pn, all of those are valid things, whatever we needed. 

And needed instance like this is a valid state of a system B, this is a valid state of a 

subsystem A. So, the total thing is a valid state, then we are taking the mixture of these 

valid states. So, this is also a valid state. it is possible that omega is just positivity 

preserving positive map but not just preserving in that case this will have different trace 

so it will be a unnormalized valid state but still a positive operator and we can normalize 

it and we can get a state we want so in that way identity tensor omega acting on rho AB 

results in a positive operator rho prime AB. But this is the case when rho AB is a 

separable state because we were writing rho AB as sum over n pn rho A n tensor rho B n 

and we have already discussed that these kinds of states are called separable states. 
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So, there's no wonder that a positive map goes to positive map because the matrix 

representation or like it's not because but we can get a hint that this will be true from the 

matrix representation of omega, the matrix representation of omega was M and from here 

we went to H and we know about one, what we know about H is it's positive, if we have 

psi tensor phi H phi tensor psi, this quantity is always positive. So, the H matrix 

corresponding to a positive map is always positive for all the product states and separable 

states is just a mixture of product states. So, in that way, we can get a hint that probably 

this statement is always true. What we want is, is it always true, is it always that, I tensor 

omega acting on rho goes to rho prime always positive for all rho positive. If rho omega 

bar goes to rho bar prime positive for all rho bar positive, it means is it always true that if 

omega is a positive map ,then it acting on a subsystem of a composite system will also be 

a positive map. Now, a general proof might be very difficult, but one counter example 

should be enough to prove that this is not the case. So, the example we have, our counter 

example is a transfer map. 
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So, transpose map takes rho to rho transpose. If rho is positive, then rho transpose is 

positive. If we apply identity tensor transpose map on rho AB, which is sum over n p n, 



which is a separable state, if we apply it on a separable state, rho B n transpose, then this 

also is positive. So, it satisfies all the properties so far of a positive map. So, transposition 

is a positive map but what will happen if we apply it on a state which is not a separable 

state, so let us take a state psi which is zero one minus one zero over two. Okay, so in a 

vector form it will be 0 1 minus 1 0 over root 2. So, the density matrix corresponding to 

this will be 1 over 2 0 1 0 1 plus 1 0 1 1 0 minus 0 1 1 0 minus 1 0 0 1. 
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We can write it in a simpler form which will be you see here we have 0 tensor 1 and 1 0 

tensor 1 and 0 tensor 1 here, so it can be written as 0 outer product 0 tensor 1 outer 

product 1 plus similarly here, one outer product one tensor zero outer product zero and 

this term here minus zero outer product one tensor one outer product zero minus one 

outer product zero tensor zero outer product one. So, when we take partial transpose over 

this state rho A B, this is the rho A B, we have then it will be the transposition on the 

second subspace so transposition on one one it will remain one one zero and one real 

state so there is no complex conjugate coming here one one tensor zero zero will remain 



zero zero minus one zero or zero one tensor one zero will become zero one after taking 

transposition minus one zero tensor one zero. So, this is our state or this is our matrix 

after transposition now we can write it and this can be a decent exercise problem that this 

matrix will look like the following, just I'm putting the grids to this is, minus one minus 

one and this is one one all other are zero. So, this is our matrix after applying partial 

transposition and we can see that the eigenvalues of this are plus half and minus half, plus 

half appears three times and minus half appears once. So, these are the eigenvalues of this 

matrix. 
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So, in that way identity tensor transpose acting on a subsystem of a larger system need 

not be a positive operator even if even if rho AB is positive. So, this is one counter 

example where we see that not all the positive maps which map positive operator to 

positive operator are positive maps, when we apply them on a subsystem of a larger 

system. So, it means even if rho is positive does not imply that identity tensor omega is 

positive. It means if omega is positive does not mean that identity tensor omega is a 

positive map. So, here we define a new operator. 

(Refer slide time: 11:34) 

 

 

 

 

 

 



We call it m positive map. M positive maps are those maps, where, we have identity, we 

have a subsystem which is m dimensional and our map omega, this is positive for omega 

positive. If you have a map which is positive map omega, it is also positive when we 

apply it on a bipartite system, one side of the bipartite system where the other party is m 

dimensional then it is called a m positive map. But we are not interested in that. We are 

interested in the completely positive maps. Completely positive map is a m positive map 

for all m. If we have a map omega, which is positive and it is m positive for all the values 

of m, then it is a completely positive map. 
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So, let me repeat if we have a map omega which is positive and I m tensor omega is also 

positive for all m then it is called a completely positive. So, the benefit or advantage of a 

completely positive map is that a completely positive map omega or completely positive 

or CP we will often say a completely positive or CP map omega is, will map density 

matrices to density matrices no matter on what subsystem on what system on what 

dimension we are applying them. So, a completely positive map will always map positive 

operators to positive operators. Hence, all the physical processes can be represented by a 

CP map. Because a physical process will always take a state of a quantum system and it 

will map to another state of a quantum system. 
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So, in that way, it's a process, it's a map which maps positive operator to positive operator 

and hence it can be represented by a completely positive map. An arbitrary completely 

positive map can be thought of as a physical process or in simpler words, if we have an 

arbitrary completely positive map then we can always find a physical process 

representing that map. So, in that way, completely positive maps represent physical 

processes and physical processes can be represented by a completely positive map. In that 

way, the set of completely positive maps is equivalent to the set of all the physical 

processes we can perform on a quantum system. There are some very interesting 

theorems, demonstrating these concepts, proving these concepts so and making them 

more formal. So, they are called choi's theorems. 
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There are two theorems and the theorem one, the first theorem states that that if we can 

write the action of this map on an operator rho as some more i ki rho ki dagger, for an 

arbitrary set of operators ki, then this map omega must be completely positive. Let me 

repeat it. If we are given a map such that the action of this map on an operator rho can be 

written as sum over i Ki rho Ki dagger. For an arbitrary set of operators K i, then omega 

must be a completely positive map. Proof is reasonably straightforward. 

First, we see that if rho is positive, then K i rho K i dagger is also positive. Let us call it 

step one. Okay, so how do we prove that the definition of positivity rho being positive is 

that its expectation value is positive for all the states psi in the Hilbert space. Now, if we 

have rho prime, which is K i rho K i dagger, then psi rho prime psi which is equal to psi 

K i rho K i dagger psi, let us call them phi rho phi and K i need not be unitary, they can 

be any arbitrary operator. So, phi need not be normalized, so we can put a normalization 

constant n outside so that phi is normalized and n is a normalization constant, so it's the 

positive number. And we know that rho is a positive operator, so phi rho phi is also a 



positive operator, so this is always positive for all the phi's. Hence for all the psi's and 

hence for all the K i's so this implies that K i rho K i dagger is a positive operator good.  
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Step two, sum over i K i rho K i dagger is positive, of course some of the positive 

operator is also a positive operator, so we don't know, there's nothing to prove here. Step 

three, Identity tensor omega rho acting on rho is rho AB let us say, bipartite system is 

sum over i identity tensor K i rho identity tensor K i dagger there is nothing to prove here 

also this is the definition of the map omega and the partial implementation of it so if rho 

AB is a positive operator. So, is identity tensor K i rho AB identity tensor K i dagger and 

hence sum over i, identity tensor K i rho A B identity tensor K i dagger positive and here 

we have not assumed anything about rho A B other than the fact that it is a positive 

operator. This implies that if omega of rho is sum over i, K i rho K i dagger, then identity 

tensor omega acting on rho AB is positive for all rho AB positive. Hence, omega is a 

completely positive number. 
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So, that's the proof of the first theorem. Now the second theorem. If we have a CP map, 

omega, then there exists a set of operators K i such that omega of rho can be written as 

sum over i K i rho K i dagger. So, the second theorem says that for every completely 

positive map, the representation sum over i K i rho K i dagger exists. It means we can 

always find a set of operators K i such that omega over rho can be written as sum over i k 

i rho K i dagger. 
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This is called operator sum representation or Kraus operator representation and the proof 

of this goes as follows. Since omega is a CP map, then identity tenser omega is also 

completely positive. Now, first let me say, let's start with the computational basis i, and 

what do we mean by computational basis that i vector is zero, vector of zeros and exactly 

one one at i th position and rest zeros. Okay, so we have a computational basis and we 

can define computational basis of the bipartite system it will be i tensor j where i and j 

runs from 1 to n or d. What is the dimension, whatever is the dimension and we are 

assuming the bipartite system has two parties of equal dimensions here. Now, we can 

define a state or a vector. So, normalization for our proof, the normalization does not 

matter here, but we just say we have a vector here, which is sum over i from 1 to d, i 

times i, so it is ii. 
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Later on, we will realize that this is an entangled state, unnormalized or maximally 

entangled state actually. But for the time being, that is irrelevant, so from here we can 

define operator E which is psi outer product psi. Since it is operator E which is psi outer 

product psi, so E is a positive operator. We can see that it is a positive operator because 

again like for any phi E phi it will be phi psi psi phi which is phi psi mod square which is 

a positive number or 0. So, in that way E is a positive operator. Now, we come back to 

our completely positive map. So, if we apply omega on one side of E, if it is a positive 

operator, then from there, we can say something about the representation of the omega 

that is the operator sum representation sum over i K i log K i. So, we have to prove that 

omega acting on E is positive, but how that will result in K i's? will that also we have to 

answer eventually. So, first before going there, we need to see over the structure of E. E 

can be written as sum over i j i i outer product j j. This is what it means by taking the 

outer product of psi with itself. And if we simplify it, it will be ij there will be i outer 

product j tensor i outer product j. 
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So, to understand, to appreciate the structure of E, first we notice that if we have any 

arbitrary operator W, which acts on the set of operators, which belongs to the set of 

operators acting on HA tensor HB, then this W can be written as some over i, Ai tensor 

Bi. So, Ais are the operator acting on HA and Bis are the operator acting on HB. Now, 

any matrix A, the Ai here, for example, can be written as sum over n, m, small a, nm, n 

outer product m. So, in this, if n is a computational basis, then a nm, small a nm, is the 



coefficient of matrix Ai. Let me put i as somewhere here. Then Ai n m is the coefficient 

of matrix Ai at a location n m. 

So, we have matrices, we have locations at 1, 1, 1, 2, 1, 3 and so on. So, this will be the 

element at n m location. So, if similarly, we can write for B but we don't need to here, so 

W becomes sum over n m i, if we substitute for a i here then it will be it will be n outer 

product m tensor a i n m b i, the summation i can go inside this so we can write it as sum 

over n m, n outer product m tensor B nm. The B nm is an operator acting on Hilbert 

space B. B nm is nothing but sum over i a i nm B i. So, what is the advantage of this? 
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It means we can write W as a matrix of matrices. I'm just putting this grid for the 

reference purpose. So, this W can be written as a matrix of matrices where each element 

is a matrix here, which is B11, B12, B13, B14, B21, B22 and so on. So, this block, if we 

write just along this block, it will be one outer product one tensor B11. Similarly, ijth 

block will be i outer product j tensor b ij. 
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So, it means an arbitrary operator W can be written as the location of the block tensor the 

block matrix. So, going back to our E. E, which was i outer product j tensor i outer 

product j, sum over ij says that in the ijth block, the matrix is ij and i j is a matrix with 



one at ijth location and zeros everywhere else. So, this is the special matrix in that sense. 

Okay, and it will be useful for our proof. Now, if we apply the completely positive map 

on E, it will be sum over ij, i outer  product j, tensor omega acting on ij. 
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So, we do not know what is the exact action of omega on ij element. But we know for 

sure, the only thing we know is since omega is a completely positive map and since E is a 

positive operator, then i tensor omega acting on E is also a positive operator. Let us call it 

E prime. So, E prime is a positive operator. The property of a positive operator is, E 

prime is Hermitian and the eigenvalues of E prime are positive semidefinite. 
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What does it mean? It means that. It means that E prime possess a spectral decomposition 

sum over n, lambda n, sn, sn. Where sn are the eigenvectors and lambda n are the 

eigenvalues. Since E prime is a positive operator, lambda n's are positive semi-definite 

and sn are the orthonormal basis. 
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Now let us take Sn and since we know E prime is a d square dimensional matrix because 

we have chosen each subsystem of d dimensions, then sn is a d square dimensional 

vector. So, it is a vector d square dimensional. Let us say we have first d element, we call 

it a vector u1 or un1, the next d element we call u n2 vector and so on. They are all 

normalized, the u nd, the d element vectors of d dimension each, we have and we are 

calling them u n1 u n2 u n3 and so on. Okay, we are just writing them for the time being, 

for the ease of calculation, so E prime becomes sum over n lambda n u n1, u n2, u nd and 

its dagger, which is u n1 ,u n2, u nd. And if we expand it, we can keep the sum over n 

outside and lambda n, it will be u n1 u n1, u n1 u n2, un1 und. un2 un1, un2 un2, un2 u 

nd and so on. So, if we look at the ijth block of it, ijth block, we can write it as ij tensor 

the block and that block will be sum over n lambda n u ni u nj and sum over ij. So, this is 

the whole E prime matrix and E prime, if you remember its identity tensor omega acting 

on. Now, compare it with E and we will see that omega acting on i j is nothing but sum 

over n lambda n u ni u nj. And this thing can be written as sum over n since lambda n are 

positive numbers so we can define u ni tilde u nj tilde, where u ni tilde is nothing but 

square root of lambda n u ni and if we define a matrix Kn such that the first column is u 

n1, second is u n2 and we have u nd. Then we can see that Kn acting on computational 

basis i will give us u ni, so which means omega acting on i j can be written as Kn tilde i j 

K n dagger. Now, if we are given any operator rho, we can always write it as rho i j, i 

outer product j sum over i j. 
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There was sum over n also. Then omega acting on rho can be written as sum over ij rho ij 

omega ij and we have shown that omega ij can be written as Kn, sum over n, ij Kn 

dagger. We can take rho ij and summation over ij inside the summation over n, we get k n 

sum over ij rho ij i outer product j Kn dagger and this is rho, so omega acting on rho can 

be written as sum over n Kn rho Kn dagger. Hence, proved. 
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