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Hello everyone. In this lecture, we will talk about the axiomatic approach to quantum 

mechanics. Quantum mechanics is one of those few theories in physics which have their 

foundations on a number of axioms. More specifically, there are four axioms that 

describes the theory of quantum mechanics. So we have quantum in the center. 

And this depends on four axioms. First axiom describes the state. So in this axiom, we 

discuss what can be called a state of a quantum system, what are its properties, what can 

be done with the state, what cannot be done with the state and stuff like that. The second 

axiom depends on the observable, that is, what is the mathematical structure of 

observables? What is their relation with the states? 

What is their relation with the measurement operators? What is their relationship with the 

dynamics of the system? And why certain mathematical structures can be called 

observables? And what kind of mathematical structures can be called observables? All 

those things have been attributed to the observable axiom. 

Third is the dynamics. This axiom talks about how a quantum system evolved, what is 

the dynamics of the quantum system and what equation can describe it. So, in this we will 

talk about Schrodinger equation and how we arrive at the Schrodinger equation. And 

fourth axiom, last but not the least is the measurement axiom. So in this we will discuss 

what do we mean by a measurement on a quantum system, what are the outcomes of that 

measurement, what happened to the system after measurement and how this measurement 

is related to the observables.  

So all these things all these four axioms together contribute to quantum mechanics. If we 

understand these four axioms at its foundational level, then the quantum mechanics will 

not be as mysterious as everyone think it is. These four axioms is everything which is 

there to be offered by quantum mechanics. If we understand these axioms, there is 

nothing else to be understood. Everything can be derived from the understanding of these 

four axioms. The first one is about the states that how we represent the state of the 



quantum system and what are the things we have to keep in mind, what is the 

mathematical background of the states, state space and stuff like that. 
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The observable axiom tells us what mathematical structure can be called observables and 

why it is so, why that particular mathematical structure is called observable and what are 

the properties of observables ? The third one is about the dynamics, how we can evolve a 

quantum state in time, how the quantum system evolves in time.  How do we perform 

transformation from one quantum state to other quantum state and what are the physical 

processes and all those are related topics but they all are subset of the dynamical 

dynamics postulate for axiom. And fourth one, which is the measurement postulate, and 

this tells us that what kind of measurements are allowed on the system, what happened to 

the system after measurement, what are the outcomes of the measurement and how we 

can find the measurable quantity in the lab using this measurement postulate and the 

observable postulate. 

So, we will start with the state. Quantum system is a physical system. So a mathematical 

structure which can contain every possible information about the quantum system should 

be called a state, can be a valid state. Let me repeat the statement, we have a quantum 

system and let us say we have a hypothetical mathematical structure and let us call it 

Ψ and we do not know what this is at the moment. It can be a function, it can be a 

operator, it can be a vector, it can be a complex number, it can be anything. Right now, 

we do not know what it is. 

We only know that if we use it in a specific manner, in some convenient manner, then we 

can retrieve all the information there is to know about a quantum state, quantum system. 



Okay so what I mean by this is, if we are allowed certain measurements on the system 

like position measurement, momentum measurement, temperature and whatever 

measurement we can think of in the lab on a quantum system, if we perform those 

measurements, we will get certain outcomes in the measurement. Those quantities we 

should be able to retrieve from the mathematical structure and if we can find such Ψ then 

we will call it the state of the quantum system. So, Ψ is the state of the quantum state 

system if it contains all the information, all the information about a given quantum 

system. So, of course, we can always say that there is too much information in any given 

quantum system. 

So how can any mathematical structure contain all that information? We will talk about 

that soon when we talk about other postulates and little bit more details of the states. But 

this is what we will base our whole course on that our state is a mathematical structure 

which contains all the information about the quantum system. But there is a small catch 

here. When we say all the information, we only mean that the information that can be 

retrieved from an experiment or from all the possible experiments. So, if quantum 

mechanics does not allow for certain information to be known, that information will not 

be contained in the state set. 

But those are slightly more advanced topic we will discuss them later on when we talk 

about other topics like the completely positive maps and state tomography and state 

preparation methods. When we talk about those things, we will know what we mean by 

what I just said that there is certain information which is not knowable from the 

experiments and that information will not be contained in the state side. So, 

mathematically, whenever we write the state of a quantum system, we put this symbol. 

So, whenever we see this symbol, it will mean that it is a quantum state and it is called 

ket. So, |Ψ⟩ means the quantum state Ψ. And if we take the adjoint of this (|Ψ⟩)†, it will 

be this symbol and that is bra psi, ⟨Ψ|. 

In the traditional quantum mechanics, the state |Ψ⟩ is an element from the Hilbert space 

H. And this Hilbert space is the space which contains all the states of the quantum 

system. 

Let us say S, quantum system is S. So, we put subscript S here just to represent that this 

Hilbert space belongs to the quantum system S. So, a state of the quantum system |Ψ⟩ 

belongs to the Hilbert space Hs and all the states of the quantum system belong to this 

Hilbert space. So, that is our first mathematical definition of the state that it is a vector in 



the Hilbert space Hs. Let me remind you that Hilbert space is a linear vector space over 

which we have defined the inner product and the metric of length distance. |Ψ⟩ is also 

called pure state as opposed to mixed state which we will be discussing later on, not in 

this lecture. The properties of this state |Ψ⟩  is that |Ψ⟩  is normalized, that the inner 

product of |Ψ⟩ with itself is 1. Notice that if we have two states |Ψ1⟩  and |Ψ2⟩ they are 

the valid state and they are they belong to the Hilbert space Hs, then their superposition, 

α |Ψ1⟩ + β|Ψ2⟩, which also belongs to the Hilbert space because that's the property of the 

Hilbert space and that is also a valid state as long as |α|2 + |β|2 = 1. 

This normalization condition is very important that the state should be normalized and we 

can take the superposition of any arbitrary number of states, the ∑ α𝑛𝑛 |Ψn⟩ is also a valid 

state as long as ∑ |α𝑛|2
𝑛 = 1 , where α𝑛  are the complex numbers. So, these are the 

properties of the states here that they should be normalized. There is a proposition as long 

as it is normalized is a valid state and they are vectors in the Hilbert space Hs. Although 

the state |Ψ⟩  is a vector in the Hilbert space Hs, not all the vectors in the Hilbert space 

are states. In fact, two states, two vectors from the Hilbert space |ϕ⟩  and |Ψ⟩   are 

equivalent if or they represent the same quantum state if |Ψ⟩ is some scalar lambda times 

|ϕ⟩. So, it means the set of all the states |ϕ⟩ such that λ|ϕ⟩ = |Ψ⟩ represent the same 

state. It means we can divide the vectors of Hilbert space into sets of vectors which 

represent the same state. Like the way we defined here that if a vector, if two vectors are 

different only by a scalar factor, then they represent the same state. So, in that way 

Hilbert space can be divided into set of such vectors. 

To understand what we are doing here, let us consider a two-dimensional Hilbert space. 

Two-dimensional real space, we have y axis, we have x axis. So, this is R2, this is a two-

dimensional vector space and we can define the inner product as the Cartesian product. 

Then we have many vectors here. For example, we can take few vectors 1 and 2 and 3. 

These are different vectors. But now consider another vector. One is this vector, let us 

call it r1 vector. And we take another vector along this line, but up to a smaller distance, 

r2 vector. 

So there are two vectors r1 and r2. They are only different in the size. So what we can do 

is we can find a vector r which is 𝐫𝟏 |𝐫𝟏|⁄ . So it's a unit vector and it is 𝐫𝟐 |𝐫𝟐|⁄ . And you 

can find many such vectors which will if we normalize it will become r vector. So, we 

take that normalized vector. We take all the normalized vectors in this space and each 

normalized vector will represent one quantum state. and in R2 a set of normalized vectors, 



if we take a set of normalized vector that will make a circle, because if we take the tips 

and if we join them, we get a circle. 
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So this circle in the whole R2 space represents the quantum state but this was a 

hypothetical example of R because it's easy to visualize. Now think of a Hilbert space 

which is a complex vector space which will be very hard to imagine but just think of it as 

a two-dimensional R2 as a as a specific version of the Hilbert space in that we take all the 

vectors which are only different in the norm and we identify it as one vector. So, one 

normalized vector will be the representative vector of that. We find all such different 

vectors and they all together will form a circle in R2 and they will form a more 

complicated mathematical structure in a more complicated Hilbert space, and that is 

called the complex projective Hilbert space. So, we identify all the vectors which are 

different only in the norm as one vector and we normalize it and we take the collection of 

all the vectors all the normalized vectors. 
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This is the complex projective Hilbert space for Hs, like we showed that the circle is the 

complex projective space for the R2. This is also called a ray space. And ray space is the 

space which contains all the quantum states of a given system, and all the points in a ray 

space are valid quantum states unlike the Hilbert space where all the vectors do not 

represent quantum states, but in Ray space all the vectors represent quantum states. 

Next is observable. What are the observables for quantum mechanics is the question we 

will be addressing in this axiom. The experience, although the states being a part of 

Hilbert space can contain complex numbers, but whenever we observe something, 

whenever we measure something, the outcome in a lab will be always real. 

So observable is some mathematical structure, let us call it Z, some mathematical 

structure such that the outcomes are real, and, the outcome should be distinguishable. 

They should be independent. In mathematical terms, it will be orthogonal. So, we are 

looking for a mathematical object, mathematical structure such that it has some quantity 

which are real numbers and some quantity which are some mathematical structure which 

are orthogonal. So, one candidate for that are the Hermitian operators, or self-adjoint 

operator. So, if we have a self-adjoint operator Z, then we know it is Z = Z†, that is the 

definition of self-adjoint or Hermitian operator. 

We know that if the operator is self-adjoint, then the eigenvalues are real and eigenvector 

are orthogonal. So, we can identify the eigenvalue as the outcomes in lab. So, whenever 

we measure this observable, then the eigenvalues will be the outcomes of the 

measurement and eigenvector will be the state we will be getting. So, in that way the 

Hermitian operators satisfy the requirement posed by the physical consideration. So, in 

quantum mechanics we will consider Hermitian operators as the observable of the 

system. If we have a Hilbert space Hs and the dimension of this Hilbert space is d. So, the 



Hilbert system we are considering is a d dimensional system. So, this can be a physical 

example of this can be an atom where we are considering only d energy levels of that 

atom. 

So, one such quantum system will have dimension d or spin half electron then it has only 

two quantum states. So, d becomes two. So, if we have a Hilbert space Hs, where the 

dimension of the Hilbert space is d, then the observables or the Hermitian operators Z 

will be d by d matrices. And they belong to a set B acting on Hs. So, this B is a set of 

operators acting on the Hilbert space H. So, the operators which are allowed to act on the 

state or on the vectors of the Hilbert space H. We are representing that with B of Hs. So, 

the Hermitian operator Z belongs to this set. Not just set, it belongs to, this is general set, 

so it belongs to the set of Hermitian operators. 

The Hermitian operators form a vector space. The set of Hermitian operator, set of all the 

Hermitian operator form a vector space over real field. The dimension of this vector 

space is d2. So, it means there are d2 mutually orthogonal and independent Hermitian 

operators you can find in this vector space. For example, for d equals two, we can have a 

basis for this vector space and this is the poly basis. I am giving one example. There are 

of course more than one example for it. So, the poly basis have four elements. One is 

identity, is a 2 by 2 identity. Then we have sigma x (𝜎𝑥), sigma y (𝜎𝑦) and sigma z (𝜎𝑧), 

where identity is [
1 0
0 1

], 𝜎𝑥  is [
0 1
1 0

]. 𝜎𝑦  is [
0 −𝑖
𝑖 0

]. The element at 𝜎𝑧 is [
1 0
0 −1

]. So 

here,  

identity is the trivial operator and the eigenvalues of that are 1 and 1. 

σ𝑥 has eigenvalue 1 and -1, 𝜎𝑦 has eigenvalue 1 and -1, 𝜎𝑧 has eigenvalue 1 and -1. If we 

represent |0⟩ 𝑎𝑠 [
1
0

] vector and |1⟩  as [
0
1

]  vector, then we can 

see 𝜎𝑧 acting on |0⟩ is just  |0⟩ and 𝜎𝑧 acting on |1⟩ is just  |1⟩. So, in that way, we can 

see 𝜎𝑥 acting on |0⟩  will give us |1⟩, 𝜎𝑥 acting on |1⟩  will give us |0⟩, 𝜎𝑦 acting on |0⟩ 

will give us i times |1⟩ and 𝜎𝑦 acting on |1⟩  will give us -i times |0⟩. Not just that, so |0⟩ 

and |1⟩ are the eigenvectors of 𝜎𝑧, eigenvector of 𝜎𝑥 can be written as (|0⟩ ± |1⟩)/√2 and 

these are of course two eigenvalues ±1, similarly eigenvectors of 𝜎𝑦  are (|0⟩ ± 𝑖|1⟩)/

√2 and they correspond to the ±1 eigenvalues. Identity operator is the trivial operator, 

every vector is an eigenvector of identity. So, we do not need to mention that here. 
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Since the poly basis is a basis for 2 by 2 Hermitian operator, any Hermitian matrix H can 

be written as ∑ ℎμ
3
μ=0 σμ, where ℎμ are real numbers, and σ0 is identity, σ1 is sigma x, σ2 

is sigma y and σ3 is sigma z. Although it is not required, but we can also define the inner 

product over the vector space of the Hermitian operator. So, the inner product between 

two matrices A and B, we can define as trace of A†B, so for Hermitian operator it will be 

just trace of AB. This is how we can define the inner product over the operators. Next is 

the dynamics or postulate dynamics of quantum system. So, in this postulate we discuss 

how a quantum system evolves in time. So, if we are given a quantum system in certain 

initial state, what is the state of the system after time t ? 

And this is where the Schrodinger equation comes into the play. Schrodinger equation is 

what defines the dynamics of the quantum system. So, how do we arrive at the 

Schrodinger equation? So, first we notice that quantum mechanics is the wave theory. It 

is inspired from the wave equation. 

And the general solution of a wave equation is 𝑒𝑖(𝒌.𝒓−ω𝑡), where k is the wave vector, 

which tells us the direction of propagation and the wavelength of the light, r is the 

position, ω is the frequency, and t is the time. This is, so any solution of the wave 

equation will be proportional to this. Now, we see that in quantum mechanics, the first 

thing we know about quantum mechanics is the energy is quantized. So, energy is always 

ℏω where ℏ is ℎ/2π, where h is the Planck's constant. So, for a given frequency, if we 

have a wave of given frequency ω, then the energy of that wave is quantized, it cannot be 

any arbitrary value, it has to be an integer multiple of this ℏω. 



So, it means if we have a state |Ψ⟩ of the quantum system, and then we have some 

operator, some energy operator Ê, that should give us ℏ𝜔 times the state |Ψ⟩. This is the 

meaning of this condition that if energy is ℏ𝜔, so ℏ𝜔 is the eigenvalue of the state of the 

operator, energy operator. And if we have the state like the wave state, wave equation, 

solution of the wave equation, then the operator acting on this state should give us ℏ𝜔 

times the state side. So, if we compare, if we say the |Ψ⟩ is proportional to 𝑒𝑖(𝒌.𝒓−𝜔𝑡), 

from here we can see that if we have 𝑖ℏ
𝑑

𝑑𝑡
 of |Ψ⟩, we get ℏ𝜔 times |Ψ⟩, the same state 

|Ψ⟩. So, in that way, it seems that the energy can be represented, energy operator can be 

represented by 𝑖ℏ
𝑑

𝑑𝑡
. The time derivative is proportional to the energy operator. 

The second quantization or not second quantization, the second thing in quantum 

mechanics is that the momentum is quantized. So, the p is ℏ𝐤. If the state of the quantum 

particle is represented by this expression, where k is the wave vector, then the momentum 

or the momentum operator or momentum vector of the particle is proportional to the k 

vector or the momentum is inversely proportional to the wavelength. So, if this equation 

has to be satisfied, then we can see that −𝑖ℏ∇ operator acting on |Ψ⟩ will give us ℏ𝐤|Ψ⟩. 

We can substitute |Ψ⟩ from this equation and we can see that this is indeed true. 

So, what we have established is that 𝑖ℏ
𝑑

𝑑𝑡
 is equivalent to the energy operator 

and -𝑖ℏ∇ operator is proportional to the momentum operator. Now, we know energy is 
𝑝2

2𝑚
+ 𝑉(𝑟) where 

𝑝2

2𝑚
 is the kinetic energy and V(r) is the potential energy. Now, if we 

substitute it here, then we get 𝑖ℏ
𝑑

𝑑𝑡
 |Ψ⟩ will be equal to 

−ℏ2

2𝑚
∇2|Ψ⟩ + 𝑉(𝑟) |Ψ⟩. So, by 

arguing the energy quantization, momentum  

quantization, the solution of the wave equation and the relation of the quantum mechanics 

with the wave equation, we have arrived at an equation in which on the left-hand side we 

have time derivative and on the right hand side we have potential energy and kinetic 

energy. And this is called the Schrodinger equation, and this equation characterizes the 

evolution of dynamics of a quantum system. 

Further, we can see that 
𝑝2

2𝑚
+ 𝑉(𝑟),  that is kinetic energy plus potential energy is H, the 

Hamiltonian of the system. So, we have a quantum system and Hamiltonian is defined 

over that system. Hamiltonian for an isolated system is just total energy. So, the operator 

H is the Hamiltonian operator and the Schrodinger equation can be written as 𝑖ℏ
𝑑

𝑑𝑡
 |Ψ⟩ =

𝐻 |Ψ⟩. And for an isolated 



system, H is time independent. So, we can write formally the solution |Ψ(t)⟩ at time t 

equals exp[-i H (t -t0)/ℏ] |Ψ(t0)⟩. 

Since H is Hamiltonian, it's an observable of the system so it must be Hermitian. It means 

H has a spectral decomposition where we have 𝐻 = ∑  λ𝑛|Ψn⟩⟨Ψn|𝑑
𝑛=1 . λ𝑛 and |Ψn⟩ are 

the eigenvalue and eigenvectors of the Hamiltonian where n is from 1 to d, where d is the 

dimension. If for the case when d is 2, then we have Hamiltonian, which is H =

λ1|Ψ1⟩⟨Ψ1|+λ2|Ψ2⟩⟨Ψ2|. Or we can just say lambda 1 or we can say E1 for the energy. 

Let me put it here also E1, ground state, plus E2, the excited state (E1|g⟩⟨g|+E2|e⟩⟨e|). 

There are only two levels of the quantum system. So, one is ground state and other is 

excited state. 

So, we are assuming E1 is smaller than E2, so that we can call it ground state. Now, in 

that case, if that is the case, then exp[-iH(t-t0)/ℏ] can be written as since|g⟩and|e⟩are 

orthogonal to each other this thing can be written as exponential of -i E1(t-t0)/ℏ or I 

would like to write E1 as ℏω1and E2 as ℏω2  so that we can cancel ℏ when we get exp[-i 

ω1(t-t0)] |g⟩⟨g|+exp[-i ω2(t-t0)] |e⟩⟨e|. What is the benefit of doing this? Now, we have 

a state |Ψ(0)⟩  which also since it is a two-dimensional state and |g⟩ and  |e⟩  are 

orthonormal basis we can write |Ψ(0)⟩ = α(0)|g⟩ + β(0)|e⟩, where α(0) and β(0) are 

the complex coefficients, such that |α(0)|2 + |β(0)|2 = 1. Once we have this, we can 

easily write |Ψ(t)⟩ as α(0) exp[-i ω1(t-t0)] |g⟩ +  β(0) exp[-i ω2(t-t0)] |e⟩. 

(Refer slide time: 35:45) 

 

And this is how we can find the evolution of the quantum system. So what we did is we 

have a Schrodinger equation in which the time derivative of a state is proportional to the 

Hamiltonian acting on the same state. From here we can see the Hamiltonian is the 



generator of the time evolution in the quantum system. So, if we are given a Hamiltonian, 

we can find the evolution of any arbitrary state by decomposing the state into the eigen 

basis of the Hamiltonian. And in that way, we can proceed with the evolution. Now, one 

thing to notice here is the evolution was done by an operator exp[-iHt/ℏ]. Here we have 

scalar t/ℏ, we have another scalar -i and we have a Hermitian operator. So, i times 

Hermitian or -i times Hermitian is an anti-Hermitian operator, exponential of an anti-

Hermitian operator is a unitary operator and this unitary operator is taking one state to 

other state. 

It so happened that this unitary operator is the time evolution operator. So, the state 

evolved in time. But in general, t can be any arbitrary parameter, H can be any arbitrary 

Hermitian operator and there is the i. So, it means unitary transformation, unitary 

operators transform a state to another state, |Ψ1⟩  to |Ψ2⟩ . So, in general, any 

transformation from |Ψ1⟩  to |Ψ2⟩  is governed by a unitary operator. If we see some 

transformation happening on a quantum system, which is not unitary, then we can be sure 

that we do not have the full information about the system. There is another hidden part of 

the system which we cannot see. But if we include that part, then the whole dynamics 

will look unitary. 

The whole transformation will look unitary. In that way, the dynamics and the 

transformations are governed by unitary operators. 


