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Okay. So let us begin the process of getting finite answers in quantum field theory for

various observables and as I had mentioned earlier this procedure is called

renormalization, okay? So let me briefly summarize what we have done so far.
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So we have seen that the integrals diverge the moment you go to one loop okay and

we have also seen using dimensional regularization how exactly these divergences

appear, this ultraviolet divergences appear in the theory, okay? And we have seen that

we get simple poles at one loop in 4 dimensions. As you approach 4 dimensions, you

get simple poles in epsilon, okay where you take d equal to 4 minus 2 epsilon and let

epsilon goes to 0.

So now our next step is to build the dimensional continuation, which we did for the

integrals directly into the Feynman rules okay that is what we want to do now. But

none of this is going to solve any of our problems as such, but what it will do is it will

make it easier to or more systematic to understand the similarities, okay, what kind of

similarities will appear in a more systematic manner rather than just looking at the

individual Feynman diagrams, okay.



So that is what I want to do. And as I said, this is not going to make anything finite

because I have to take epsilon going to 0 eventually, meaning I should work in 4

dimensions and all those integrals will diverge, okay. But nevertheless, this will be the

first step towards our goal of getting final answers, okay? So let us begin with that.

So again, my all the work that I will do will be in the phi four theory, whose action is

this d 4 x half del mu phi del delta mu phi minus half m square phi square minus

lambda over 4 factorial phi to the 4, okay? But now I want to use a different action,

not this one, which will be given by this. So instead of working with this section we

work with the following.

So I will work instead with integral d dx okay, I am going to d number of space time

dimensions, okay? And you have again half del mu phi del mu phi that will not

change because after all this is what this is d 0 phi d 0 phi plus d 1 phi d 1 phi plus d 2

phi d 2 phi and so forth. And if you have d number of them let us say d is integer then

it is just a more number of terms, right?

So it will have d 0 phi, d 0 phi, d 1 d 1, d 2 d 2 and so forth up to d d – 1 phi, d d -1

phi, okay? But I am going to view it not as a d as an integer but I will let it even take

fractional values okay. But we will not worry so much about what exactly it means to

have d as fractional okay and worry about those details. Our aim will be just to get

Feynman rules which are valid and eventually which give integrals which are of this

form.
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So instead of getting integrals of this form, I will start getting integrals directly of

these forms, like these ones, okay.
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Here, which are already continued. So that is all we are trying right now. Okay, I am

not trying to worry about what it means to have an action in fraction number of

dimensions, okay or even yeah. So let me write it as minus half, instead of m, I will

write m prime. So m prime square phi square minus lambda over 4 factorial, lambda

prime over 4 factorial phi to the four, okay?

I have just renamed m to m prime and lambda to lambda prime, okay? Okay, so I

want to work with this integral. And now this is in, instead of 4 dimensions it is in d

dimensions. So let us do the first simplest exercise of checking the mass dimensions



of the fields and these mass parameter and the coupling constant that appear here,

okay? And remember to do that, we should remember that S has dimensions of h bar,

alright Planck’s constant, okay?

They have the same dimension. If you check, look at action okay, and convince

yourself that action has mass dimensions of this constant h if you have not already

done so. Then because we are in natural units in which h bar is 1, also c is 1, it means

that because h bar is 1 a number, it is a dimensionless object okay, in these units, then

action is dimensionless, meaning the mass dimension of S is 0 okay, it is m power 0,

okay?

So now let us determine the mass dimension of m prime and lambda prime and phi.

Now I cannot start that exercise from this term or this term, okay, because here there

are two objects whose mass dimensions are not determined i phi, I do not know what

is the mass dimension of that okay, because now I am in d dimension.

The mass dimension of phi, what it used to be in 4 dimension is not going to be true.

And also in this term, I have another factor m prime square. So I cannot disentangle

from here the mass dimension of phi and mass dimension of m separating, okay? So I

should go to a term in which I do not have this issue and which is this one, first term,

okay?

There is only field phi for which I need to figure out the mass dimension because the

dimension of del mu is known. Del mu is just a derivative with respect to a particular

coordinate so that its dimension will be 1. So this I know, okay? d dx, the mass

dimension of that will be -d right, because you have dx 0, dx 1, dx 2 so and so forth

dx and sorry d - 1. So they are each of them has a mass dimension of -1.

So the total mass dimension will be –d, okay? So this has – d, del mu has 1. So -d plus

for this it is 1, four that it is 1 so 2 plus must dimension of phi, but there are two such

factors. So two times of it. And that all should add up to 0 because action is

dimensionless. So each term should be dimensionless. So what does that give? That

gives d is equal to sorry mass dimension of phi is equal to d minus 2 over 2.



That is what in general case. But for us, because we are taking d equal to 4 - 2 epsilon,

okay. So 4 over 2 is 2 minus yeah, correct. So 4 over 2 is 2 minus epsilon, and then

you have -1 coming from here -1. So this is 1 minus epsilon, okay? So that is the mass

dimension of phi. Let us now find out the mass dimension of m. So again the same

exercise.
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M prime sorry, this you will find that this is 1. Let us check how. So mass dimension

of phi, so phi square is here. So it will be d minus 2 over 2 okay and sorry d minus 2

because two factors, okay. So d minus 2 over 2 is for each phi. So two times of it, so it

is d – 2. And you have a –d. Okay, so let us write down there. d dx you have and then

you have m prime square and then you have phi square okay?

So this is giving you d – 2. That gives you - d and this is 2 times of m prime. And that

should add up to 0. And you see that m prime has dimensions of mass so it is 1, okay?

From this m prime is 1, mass dimension of m prime is 1, okay? And let us now look

at lambda prime. Remember lambda prime or equivalently lambda in 4 dimension it

used to be dimensionless, okay?

Let us see what happens when you go to d dimensions whether lambda prime is still

dimensionless, okay? So again d dx so it gives you - d plus lambda prime, dimension

of lambda prime plus phi to the 4, so 4 times d – 2 over 2 okay because each of phi

has dimension d – 2 over 2 from here, okay. So what does that give? This gives

lambda prime 4 d over 2 is 2d. 2d - d is d.



And this is -4 or lambda prime is equal to 4 - d minus, okay? So as you see this is

correct because if d is 4 then you get 4 – 4 zero. So lambda prime becomes

dimensionless in 4 dimension which is something you already knew, okay? And this n

4 - 2 epsilon dimensions becomes 2 epsilon, okay? So lambda prime has dimensions 2

epsilon. Let me record all this here.

Phi has dimension 1 minus epsilon, m prime has dimension 1. That did not change

from 4 dimension, it is still the same. Lambda prime has dimension 2 epsilon, okay?

So what I will do now is I will redefine. I will just a second. I will redefine this

lambda prime such that in this way. Lambda prime I will call it mu to the 2 epsilon

times lambda because that is how I want to write lambda prime.

So this is basically defining lambda. mu is some arbitrary mass scale, Okay? So what

is the benefit? By doing this lambda becomes dimensionless right, because if you look

at the mass dimension of lambda prime this says mass to the power 2 epsilon. So

when you take it on the right hand side the mass dimension of this, mass dimension of

mu will be, mu to the 2 epsilon will be 2 epsilon.

And because now the mass dimension of left hand side is already taken care of by the

factor mu to the 2 epsilon, lambda is dimensionless, okay? And also note that mu is

completely arbitrary. This has no relation with any of the physical scales in any

problem okay, which you are doing. Because here the purpose of mu is just to absorb

the mass dimension of lambda prime okay, so that I can have lambda to be

dimensionless.

Also I will instead was calling m prime I will call it m, okay? The reason I put m

prime in the beginning because I wanted to check what is the mass dimension and if it

also had some, it has changed its mass dimension then I would have similarly

introduced some scale okay, mass scale. But because it turned out to be again having

the same mass dimension as before I am not changing it, okay.

So that is the notation I want to use now. So I will write that action using these

lambda and m.
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So my action becomes integral d dx half del mu phi delta mu phi minus half m square

phi square minus mu to the 2 epsilon lambda over 4 factorial phi to the 4, okay? That

is the action with which I want to work, okay? And remember lambda is

dimensionless now, okay. So I will just write this here, okay.

Now some time back in I think in the previous course probably I had told you that we

can change the, we can redesign the fields, okay? There is nothing secret about half

delta mu phi del mu phi. Even the factor half here, this factor half, you could absorb

into phi.

You could say I do not want to work with this phi, but I will work, I will define half

phi to be let us say phi prime and I will write this action as del mu phi prime del mu

phi prime and this half vector will start appearing in these pieces, okay? That is

something you could do and we also had introduced some factor of z and redefined.

So what I am going to do now is I am going to redefine the fields and these

parameters again, okay?

And you will see later why that will be useful. But for now I will do this, okay? So let

us define phi to be z phi to the half okay times phi R. And m to be z m times m R and

lambda to be z lambda times lambda R okay? Where phi R m Rand lambda R are the

fields which are finite and these z’s they are so z i where i is phi and m 1 lambda is of



this form 1 plus let us call it z i prime okay, where z i prime starts at order lambda,

okay?

So I am saying that instead of working with phi, I want to work with phi R, okay. And

here is some change in the normalization of the field. Okay, I am just changing the

normalizations of the field and of these m's and lambda’s. And I have introduced these

factors, okay. And I say that these factors are of this form 1 plus that z i prime, okay?

Like z m is 1 plus z m prime.

And where the property z m prime has is that it starts at order lambda, okay? It does

not have a order one term, it starts at order lambda, okay? It will be lambda times

something plus lambda square times something and so forth, okay? So that is the

redefinition I do. And these constants z phi z m and z lambda, sorry, these are called

renormalization constants, okay.

And these z’s are functions of lambda and m okay, and because lambda is a function

of lambda R okay, m is a function of lambda because there is a factor of z m; z m

depends on lambda and m, but lambda is a function of lambda R, m is a function of m

R. So all these z i’s are basically functions of lambda R and m R right, because of

these relations, okay? An important point is that z i is 1 plus order lambda R terms,

okay?

So here I said z i prime starts at order lambda but now because lambda itself starts at

order lambda R okay because lambda R times z lambda and z lambda is 1 plus

something. So this statement then becomes z i prime starts at order lambda R okay

because of this, this relation. So all these renormalization constants are actually

functions of lambda R and m R, the way I have defined all this.

So also another thing I should tell you that this, the way I have redefined these fields,

you will see soon the nature of the z’s that they are going to absorb infinities, okay?

And we will see what all this means after we have done the calculation, okay? It is

easier to appreciate once the calculation has been done when you have seen

everything explicitly.



Then one understands why this has worked or what is the meaning of doing all this,

okay? Beforehand it is a bit difficult to appreciate. So yeah, one thing I wanted to say

here is that this is called multiplicative renormalization okay, when you have this

renormalization constants multiplying the renormalized fields, okay? When I am

using subscript R okay to a field or a parameter, I call it as a renormalized field.

So phi R, m R and lambda R these are renormalized fields and parameters, whether it

is a mass parameter or a coupling constant, okay? And this because this is

multiplicative, the z factors are multiplying the phi R’s, this is called multiplicative

renormalization. Okay, I should have used some color. Okay, so this is

multiplicatively renormalization. These are the renormalization constants.

And these fields and mass parameters these are called renormalized fields and the

renormalized mass parameter and renormalized coupling constant, okay? So good I

have said a lot of things here but mostly it is just redefining something, okay? Now

whether all this will be useful or not we have to see later. But no one can stop me

from doing what I have done just now, okay.

There is no way you can stop me from saying that this is not allowed. You cannot say

that I cannot write phi as z phi half as phi R, okay because this is allowed. I can

redefine the field. Similarly mass parameter I can write it as a product of these two

okay where z m is some constant okay, and z lambda is some constant. I can write it

this way, okay.

So you cannot stop, not because you are not physically present here to stop me but

because there is nothing inconsistent that I am doing. So I am allowed to do this.

Okay, so let me put this back into the action and see how the action looks like, okay?

But it is still the same action okay, this action. I am not going to change anything. It is

the same action I rewrite differently.
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So S the action becomes the same action, the same theory, now looks like the

following. Half z phi to the half times phi R, del mu phi R okay, again there is a del

mu phi R and that also brings a factor root z, square root of z and those two square

roots of z make z phi, okay. So that is first term. Then you have the mass term and

that becomes minus half. We had m square so and also phi R square, sorry phi square.

So phi R, phi when I write in terms of phi R, it becomes phi R square and it will bring

a factor of z phi, okay? So that is what I am writing here. Then you have m square and

when you write it in terms of m R square, it will bring a factor of z m square, okay

because z m times m R is what is m. So the square of it gives you z m square m R

square, okay.

Then you have minus 1 over 4 factorial, let us stop writing now, mu to the 2 epsilon,

okay? Then you can check that you get z lambda times z phi square times lambda R

times phi R to the 4, okay? Let us check whether this is correct. Because you had phi

to the 4 okay, it will bring 4 powers of square root of z phi that means z square.

And then we had lambda here and that brings z lambda and this is mu to the 2 epsilon,

which was present and minus 1 over 4 factorial, okay. So that is how the action looks

like now for the same theory. The physical content has not been changed, okay? It is

all the same. I have just redefined fields. But that does not change the content of the

theory.



Meaning, if you were calculating some observable earlier using S and you do it again,

you will get the same result. The only thing is that earlier, you are getting nothing

because you are getting infinities and now also it is the same. So you still do not get

anything sensible but as far as the theory is concerned it is the same theory, okay? So

now this does not look like what we are used to.

So I will now add and subtract the following to this section, okay? Add and subtract

the same thing so that I do not alter the action. So add and subtract half del mu phi R

del mu phi R minus half m R square phi R square, okay. So this is something in terms

of the renormalized fields and renormalized mass parameter, okay? So I will just add

and subtract this to the Lagrangian density and my action will become the following.

So S is integral d dx. So I am adding now first half del mu phi R del mu phi R minus

half m R square phi R square, okay?

Now I should subtract this from this section right, so that it means that I have not done

anything, I have not altered anything in the action. So when I do so I will get the

following terms. So I will write this half z phi del mu phi R del mu phi R and subtract

from it half del mu phi R del mu phi R, which will give me half z phi, so that is the

term which is present.

And from, when I am subtracting this, this gives a -1, del mu phi, del mu phi, the

laptop has slowed down suddenly, okay anyway. Okay, let us check whether this is

correct. So you have here, if you take this first term and this term and add them up,

what do you get?

Because of this -1 this term cancels okay and you are left with only half z phi del mu

phi R del mu phi R, which is what you had originally okay, which means that I have

not changed the first term as I have written here, okay? Now let us look at minus half

m R square phi R square term that I have added. So I should subtract it and I will

subtract it from here.

So minus half, it looks like I cannot write at all, minus half, let me try again. z phi z m

square minus 1 okay, m R square, I just want to finish this action, not letting me, m R



square phi R square, okay. So let us check whether this is fine. Again minus half times

minus 1 is half, so half m R square phi R square okay with the plus sign that cancels

against this one, okay?

So that I get rid of and what is left with is, what is left is half z phi z m square half z

phi z m square with the minus sign m R square phi R square. So that is also correct.

Now let me write down the last term. Minus mu to the 2 epsilon okay? Then you have

lambda R over 4 factorial, and then z of lambda, z of phi square minus 1.

You can check that this is the right factor and phi R to the 4. This is difficult, okay. So

finally I managed to write this. Okay, so that is how the same action which I wrote

earlier in terms of phi’s looks like when I write in terms of phi R, okay? Now let me

tell you why I have done this before I proceed further and anyway I cannot proceed

further in this video because I am unable to write at all.

So see the way it was written here, in this on the top here. Okay, now it works. Okay

this is working now. Okay, so the way it was written here in, the way the action was

written on the top had del mu phi R del mu phi R, that is the usual kinetic term but

then you have a z phi. But z phi is a function of lambda R and m R which are your

constants, okay?

So I do not want to put it this way but I want to put it in the canonical form the way

usually we write the kinetic term without coupling constants, okay. And that is why I

have written it this way because once I write it this way, the propagator in the theory

will be exactly the same which I had earlier, okay. Instead of m I will have m R but

other than that everything looks the same.

So that is why I have added and subtracted that term so that I in the action I have the

parts, the parts which were present earlier, okay. I think I missed this one. So not only

add and subtract this, I also wanted to add this one, this one I forgo, okay. So you see

that I have added and subtracted the entire action that we used to have.

The only difference is that instead of phi I have phi R but looks exactly the same,

okay? So here also okay, which is good, because when I am writing the Feynman



rules, I will have exactly the same Feynman rules with the only difference being that

the names would have changed for the parameters and mu to the 2 epsilon will appear

in the vertex. But other than that, everything is the same.

And there is another difference that will come here is, you have more terms, so you

have more vertices, okay? Let us look at this term okay? This has z phi; z phi starts

with 1. So that 1 cancels 1 and it is left with z phi prime, which I had earlier defined

okay, which starts at lambda or lambda R. So this term would contain a factor of

lambda. So that is a coupling term, right?

This is a kinetic term. Here, it does not contain any factors of coupling, but here it

does. So that is a coupling term. That is a interaction term, which has derivatives here,

but it is still an interaction term. Similarly this one, okay? This is also quadratic like

this one this term.

But again, it contains factors of coupling okay, coupling constant lambda R and that is

why this is also an interaction term and the same is true for this one also okay,

because they are factors of lambda and any way this is not even quadratic, that is

quartic. So that is also a coupling term, okay.

So compared to the theory written in terms of phi and m and lambda, this has more

number of vertices in the theory okay, more number of interaction terms in the theory.

So now I will give you the Feynman rules and you can immediately see that these are

the correct ones. So let us, first let us write down, let us write down the propagator.

Maybe I should, okay let me take it to the next page. Okay, here and then here I will

just paste it. I hope that this will be also easily visible, okay.
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So that is how the action looks like now, okay. So what are the Feynman rules then?

Feynman rules. Or maybe I will, okay now I cannot move it. So Feynman rules.

Remember it is still the same theory, I have not changed really anything okay,

physical content everything is the same. Redefining certain things cannot change the

physics content. So how about the propagator?

Propagator is given by these first two quadratic terms and this is of exactly the same

form as before so I also get the same thing as before. But now it will be m R square.

And remember m R is still a mass parameter, okay? It is not a physical mass of

anything, because you remember how we find the physical mass of particles in the

theory.

You can look at the poles of Green’s functions or let us say 2 point function, okay.

And look at the pole and that pole will give you the fiscal mass. The physical mass

will be a function of lambda and R, sorry, lambda and m which in our case now has

become functions of m R in lambda R. So physical mass will be a function of m R

and lambda R, okay.

So m p would be, m p’s physical mass will be some function of m R and lambda R,

okay? That is what we can say but m R is not itself the physical mass, okay. So that is

one of the Feynman rules. Then as before we have this vertex coming from minus

lambda R over 4 factorial phi to the R, but you have a factor of mu to the 2 epsilon



also. And remember, recall that the vertex here was minus i lambda over 4 factorial

earlier, that is what we had minus i lambda over 4 factorial.

So instead of lambda, I will have lambda R, okay. And I also have factor m mu to the

2 epsilon okay, which is basically i times minus lambda R over 4 factorial mu to the 2

epsilon, okay. So you see that minus lambda R over 4 factorial is this minus lambda R

over 4 factorial and this is a factor of phi, okay.

If you go back to the first course you will see how this factor of i came out okay, in

the Green’s functions because we had written everything in terms of how to say

vacuum expectation values of fields and then there was an exponential and e to the i

of that interaction term and that is from where the i was coming okay, when you

expand the exponential.

So it is that i but now unlike the fact that you had only this term in the expression of

Green’s function okay, you also have these terms, okay. So which means that these

will also give you vertices. So let us look at this, these two terms now. There are two

terms in this line, so let us take both of them and del mu phi R del mu phi R that will

give you a factor of p square, okay?

When you take the derivatives it pulls out factors of i p okay? So you will get the

following. So this vertex I am drawing it this way because it has only two fields phi’s

that appear phi R and phi R okay and so it has two external lines. This one also has

phi square, so two external lines, okay? And you get R times half z phi minus 1 p

square minus half z phi, sorry, z m square minus 1 m R square.

Let me check. Okay, looks fine. Z m square minus 1 m R square, okay? So you see

you have in this theory, I mean it is the same theory, but the way we have rewritten

things, you also have a vertex which is a two point vertex, okay? We never had such a

vertex before, we always had a 4 point or a 3 point vertex, but it is the first time we

are seeing a 2 point vertex, and these are usually denoted by putting a cross, okay?

So all those vertices in this action which carry effectors of z okay, or z m or whatever,

they will be denoted by this cross, by putting a cross on the vertex. And there is one



more that you have which is a 4 point vertex coming from this last line, okay. And I

have put a cross because this also has factors of z’s. And it is a 4 point vertex because

you have 4 fields, okay.

So 4 lines you can connect that is why it has 4 legs. So this is e to the sorry i minus R

times 2 epsilon lambda R over 4 factorial times z lambda z phi square minus 1, okay.

So these are our Feynman rules with which we should work. And remember we have

a, we always have momentum conservation at each vertex when we are drawing

Feynman diagrams and that momentum conservation is now d dimensional, okay?

So it is really 2 pi to the d and delta d and the sum of all momenta that are entering

into that vertex, okay? So that is the only other thing that you have to keep in mind.

Now given that we have these Feynman rules let us first figure out whether these

three new vertices or sorry these two new vertices they are of the same order as the 4

point vertex here or are they different. So this one this vertex is of order lambda,

lambda R okay.

So this vertex is of order lambda R, okay. Now let us look at this one. This vertex has

z phi and this term. Let us look at z phi. So z phi is 1 plus z prime phi okay or

whatever 1 plus some function that starts at order lambda R. So that one cancels and

whatever you have here starts at order lambda R, okay? So this two point function

clearly starts at order lambda R, sorry this 2 point vertex not 2 point function.

So this is also vertex that is of order lambda R. Now let us look at this 4 point vertex

which you have in this way of writing. Here it already has an explicit factor of lambda

R, right because you have a factor of lambda R here. Then z lambda and z phi they

start at order 1. So z lambda z phi square, the lowest order term in this will be 1. So

that 1 will cancel this 1, okay.

And the second term, the next term in these will be of order lambda, lambda R, okay?

So you see that this factor contribute something of order lambda R, okay? That order

lambda R term times this lambda R makes this vertex order lambda square, order

lambda R square, okay? So this is a vertex that is of higher order compared to these

two vertices.



So if you are calculating something only up to order lambda R, then you do not need

to use this last vertex because that contributes at order lambda R square, okay? So one

has to be also careful in using this because these are of different orders, okay. Now we

have all these Feynman rules and we have modified or redefined the fields in terms of

renormalized fields and renormalized mass parameter and renormalized coupling

constant, okay.

But nothing has really changed. You still calculate whatever you want, you will get

infinity okay, because just redefining things cannot help. So we will see how to get

finite answers in the next video.

But here I want to also bring your attention to the fact that even though you have

several interaction terms in this section like this phi to the 4 term, and this interaction

term which has del mu phi R del mu phi R coupling and this phi R square and phi R 4,

these coupling constants are not independent, okay? They are not all different, they

are not all independent.

They all are completely determined in terms of lambda R and m R okay. So because

you know a long back I was telling that whenever you write a interaction term in the

Lagrangian you have to include a coupling constant and these coupling constants are

independent of each other in general unless certain symmetries force them to be

related, they are independent.

And here you see that it is just because we have rewritten things in certain way that is

why these couplings are still know are given by these two coupling constants, lambda

R and m R. The number of coupling constants has not changed. It is the same theory,

okay. So all this algebra will be very useful, all these calculations will be very useful

now in setting up the procedure to get finite answers okay, and that is what we will

take up next.


