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We have seen that the Feynman integrals for loop diagrams are singular and as I said earlier

that we will have to use a regularization procedure to filter out the ultraviolet singularities.

Now this step is not going to make; I am not going to solve the problem because at the end I

should remove the regulator and when I do so the singularities will be present, but

nevertheless this is the first step so let me show you how to do this.

And first I will do this in the simplest setting which means I will not be using Feynman

integrals, but some ordinary simple integrals and tell you what the idea is. So, we want to

regulate the integrals. An integral I which is integral 2 to infinity dx over x. So, this is going

to serve as a toy example for Feynman integrals. Now you see that this integral is singular

because upper limit infinity gives you divergence.

This integrates to a log of x and when you put the upper limit it gives you log of infinity. So,

what I do is I look at a modified integral which I will call I regulated which is defined to be 2

to some capital lambda dx over x. This gives you log of lambda - log of 2. So, here we have

regulated the integral as lambda goes to infinity you recover back this original integral I. So I

regulated I subscript reg goes over to I when you take lambda to infinity.



But when you put lambda to be a large number but finite this is how this singularity appears.

So, there are two terms. One is finite so that is finite contribution and that is the singular

contribution a singular going to infinity limit. So, this is an example of a regulator. I will give

you another example again let us look at the same integral and I will regulate it differently.

So, I can regulate by the following method.

So, I will write it as I prime regulated which is the following. So, I modify the integral to this.

This is the original one from this I subtract let us see why this will regulate the integral.

Lower limit 2 is not a problem nothing diverges at x equal to 2, but when x goes to infinity

this is diverging it has 1 over x and that becomes singular and the integral of it is also

singular.

But here what I have done is I have introduced a cut off M; M is a large number. So, when x

becomes very large, but M is finite M is large, but finite. Now when x becomes large very,

very large compared to M then the contributions from this regions of large x are same in this

integral and this integral. So, you can effectively drop M when x is very large and this gives

you dx over x.

So, large x behavior of the integrand is as 1 over x and this one also has 1 over x. So, you see

that you will not get a singularity because of this upper limit. So, large x behaviour of the

second term integrand is same as the original integrand which cancels the singularity arising

from is x going to infinity. So, having d x 1 over x - 1 over x + M that gives you a regulated

integral.

And you can explicitly check that I prime regulated is log of 1 + M over 2. So, now I should

take M to infinity why because when I take M to infinity then this integral vanishes because it

is 1 over infinity which is 0. So, this integral just drops out and you are left with only the

original integral which we wanted to determine. So, this is a intermediate procedure where I

have regulated the integral.

And when I put M going to infinity this gives you a divergent contribution. So, it is a

divergent result which you already know it should be divergent, but for any finite M, but

large this is a finite thing. So, these are kinds of regulators that we use in the Feynman



integrals also. So, these kinds go by the name of Pauli–Villars and these ones by momentum

cut off this variety where you put a cut off on the momentum that is called momentum cut

off.

And this where you change the propagators it is called Pauli–Villars. So, maybe I should tell

you so momentum cutoff you have already seen.
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So, I will just mention Pauli–Villars. So, here you will replace the propagator where M square

is a large number which you have to take to infinity at the end and the argument I gave before

applies. So, these are some regulators that you can use, but the best one to use is dimensional

regularization and that is what I am going to talk about now dimensional regularization which

means that I will take a given Feynman integral.

And reduce the number of dimensions low enough that the integral becomes convergent. You

remember that all these divergences for example here in this Euclidean integral the

divergence comes because of these powers in the numerator becoming larger than the

denominator or equal to the denominator powers of l in the denominator, but if I reduce this

dimension sufficiently then I can make the integral convergent or finite.

So, that is what we do. So, we take the number of dimensions to be small enough that the

integral is finite, but then I should be able to take the n equal to 4 limit because all the

integrals have to be done in 4 dimensions, but thing is that I should be able to continue



continuously these numbers, these dimensions I should be able to do to give the expressions

of the integrals even for fractional dimensions.

So, what I am going to show you is that this can be done meaning we can continue to I will

shall show you that we can continue the dimensions n to the complex plane and this is what I

plan to show you explicitly in this lecture. Let us see how it is done. So, we have seen that

one loop integral Feynman integrals they are of this form. Earlier I had written only with x

not to Feynman parameters x 1 and x 2 because I had used up the delta function already in

writing down the expression.

But if you keep the delta function then you get the following. So, here I have instead of

putting n equal to 4 I have put n, but then n is discrete here n could be 2 or n could be 3 or n

could be 4 or n could be 1 depending on in how many dimensions the given integral

converges. So, that is the form of the integral it depends on all these parameters, the M square

depends on all these parameters.

And all the momenta that you have the dot products and M square if you have more than one

variety of particle then you may have different masses here M 1 square M 2 square and so

forth. So, this was for a particular example where you had only two propagators that is why

you have a 2 here and we also saw that multi-loop integrals have exactly the same form

except for the fact that there are few more Feynman parameters that appear because you have

many more propagators in the problem, but the general structure is identical.

So, you get d x 1 dx I am using capital N for the number of propagators. So for each

propagator you have a Feynman parameter then we saw that it has to be d n L k Euclidean L

is the number of loops and here I have omitted many other constants because I want to only

focus on the relevant integral this M square also depends on all these parameters let me write

x i p i dot p j m square or let us say I allow for different masses.

So, I will write m i square of course for the theory which we are looking at there is only one

mass so do not have a subscript i here, but in general you will have that N is the number of

Feynman propagators p i's, are the external momenta mi are the masses L is the number of

loops N is the number of dimensions wherein we need results for N equal to 4. So that is the



structure maybe I should write here N is number of propagators and L is number of loops, n

is number of dimensions.

So, that is the general structure. So, let us look at this k E integral because that is the one

which gives ultraviolet divergence. So, its structure is it has some powers of k in the

numerator and some different power of k in the denominator. So, I will concentrate on an

integral of this form.
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So, I define I d N M to be the following d d k E over 2 pi d times 1 over – k E square – M

square power N. So, here if you are looking at one loop integral then d is equal to n, but if

you are looking at a multi loop integral then d is equal to n times L that is the thing here you

have to take care of the factors of I when you go from Minkowski to Euclidean by taking k 0

along the imaginary axis.

So, each k 0 will bring a factor of I. Here in this case when you are looking at one loop you

get only one factor of I so that is what you have to multiply here to convert to Minkowski

space, but here you will have more number of factors of I because you had several loop

integrals l number of them so you will have L factors of I the complex I, but anyhow let us

look at this Euclidean integral.

And try to see if we can write down the integral in a manner where d is allowed to be

complex. See the way it is written right now d is integer because here n is number of

dimensions which we are saying it is discrete it could be 1, 2 pr 3. L is some number of loops



so n times L is positive integer. So, at the moment here d is a positive integer if you look at

the way this integral is written.

So, let us go ahead with this and see if I can write in form of this integral or an expression for

this integral which can be analytically continued to complex d dimensions and the simplest

way is to do the integral. Let us now evaluate this integral the result will be of course a

function of M and d and N and that is why I have put these labels here in the argument of the

integral.

So, you see that the integrand does not depend on the different components of the vector k E

independently only depends on the k E square. So, it immediately tells us that we should be

using spherical coordinates, they are the most suitable coordinates in this case. So, let me

introduce that k E1 first component of the Euclidean k and second component and so forth.

There will be total d components.

So, instead of using these as the integration variables I do a change of variables and go to the

polar coordinate the radial coordinate I will call r and then we will have how many angular

variables d - 1 angular variables because we have total d variables here I should have exactly

d variables on the right hand side after the transformation I have chosen one to be r then

others have to be d – 1.

So, these are the angular variables that we should get. This is our radial coordinate and these

are our d - 1 angular variables. So, let us see how about the measure d d k E that becomes

what r power d - 1 d r. So, you see that you have to have a d r because you are going to these

variables, but then you have to have a factor r power d - 1 because now this balances the

dimensions on the both sides.

If k is of dimension momentum then r also has to have dimension momentum and on the left

you have d powers of momentum. So, it is clear that you should have r power d - 1 so that

together with d r it makes d powers of momentum and remaining volumes are angular

variables and the measure I will write as d omega d – 1. So, this is the volume element in the

angular space and this d - 1 tells you that there are d - 1 angular variables.



The subscript reminds you that you have d - 1 angular variables. So, the denominator of the

integrand which is - k Euclidean square - M square power N this becomes - r square - M

square power N. So, there is no angular dependence here that is why we have used it. Now

define r square to be M square rho all I am doing is trying to just filter out the M dependence.

So, when I do that this becomes - M square rho - M square power N which is - 1 power N M

square power N rho + 1 power N that is good that is about the integrand.

Now let us look at the measure you can easily see that r power d - 1 d r is equal to M square

rho d – 2 over 2 M square d rho over 2, you can check by finding what how d r and d rho are

related. This is easy to do. So, now when you plug in this integrand and r d - 1 d r in terms of

rho you will get the following again simple algebra you get the following.
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Let me write the integral also it will be useful easier to see. So, substituting whatever we have

written on the previous page we get the following 1 over 2 pi to the d - 1 power N into half M

square d over 2 - N times the rho integral which is d rho power d - 2 over 2 1 + rho power - N

times del d omega d - 1. Let us look at this factor this line here you can take N to be complex

nothing stops you from saying that N is complex in this.

How about here we will see and how about so not just N also about the d. So, d and N you

can take complex in this because you have complex functions are defined if you have M

square power some complex number here you have this expression and then I have d omega d

- 1 where it looks like that d has to be integral because that is the number of variables you

cannot have fractional number of variables.



We are looking at a angular volume integral where d is the number of angular variables. So, it

looks like there is no way we could get an expression in which d could be a complex number,

but let us anyway push further and let us see what we get. So, first we will evaluate this

integral and it will be useful to have with us some special functions I will write down here.

So, you have already studied beta function so beta of z 1, z 2 where z 1 and z 2 are complex.

There will be some restrictions on what values are allowed, but this is the general expression

t power z 1 - 1 - t z 2 - 1 that is the definition of beta function. These are another expression,

another integral representation of the beta function which is 0 to infinity. Here in the, integral

is from 0 to 1, but you can also write it as an integral where t runs from 0 to infinity and the

expression is this.

And this is useful for us because our integral here in the second line is of this form. Let me

give you few more results which we will use beta of z 1 z 2 is gamma of z 1 where gamma is

gamma function gamma z 1 gamma z 2 divided by gamma of z 1 + z 2 and also gamma

function is defined as follows and there is an another form there are several forms, but this is

the one we will use t goes from 0 to infinity e to the - t square t to the 2 z - 1. So, these results

will be useful.
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I think it will be a good idea to keep them safely at one place. It did not work why let me try

again hopefully it will work this and I should remove this okay good. Let me check if I made

any mistake in writing z 2 - 1 the first one is correct, second one is also correct, third one is



correct 0 to infinity d t e to the - t power z - 1 that is right and this one is wrong I have missed

a factor of half for some reason it is not right and why some strange behaviour.

So, a factor of half was missed here also. So, now you see that this line this is just beta of d

over 2 N - d over 2. You can check it from here so you say that z 1 - 1 is d - 2 over 2 and - N

is – z 1 – z 2 then you figure out what z 1 and z 2 should be and put it here. So, that is beta of

d over 2 and N - d over 2. Now you see that even in this second line now where you have this

rho integral even though we had d and N to be integers originally.

I can continue to complex plane because beta is defined in the complex plane for its

arguments. So, these capital N and d they can also be continued to complex plane. Now the

only thing that is left is the angular integral. So, let us look at that first and then I will

combine all the results.
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Okay let us see whether that can be done and here I am going to involve this trick. So, I

evaluate the following integral. I evaluate the integral let us call it small i that is not good

what should I call let us call it J okay integral J which is the following - infinity to infinity d y

1 to d y d + 1 e to the - y 1 square + y 2 square so and so forth to y d + 1 square that is the

integral I am interested in evaluating because it will be useful in determining omega d okay.

I am calculating integral d omega d and later I will put replace d by d - 1. So, because again

you see that the integrand this exponential involves only the sum of the squares so it tells us

that I should use angular integrals and that will be useful I mean spherical coordinates in



spherical coordinates I will have d y 1 to d y d + 1 is equal to r power d d r you have seen

already this kind of thing before 0 to infinity.

See if you think of y as having dimensions of length or momentum or whatever let us say

dimensions of length then these are d + 1 then the left hand side has dimensions length power

d + 1 and because I am going to involve all other integrals to be angular the total which are

dimensionless. So, the entire dimension of length on the left hand side has to be matched by

this. So, r power d r that gives you d + 1 powers of length.

So, that is why you have r d and then you have e to the - r square that is coming from here

where r is the radial coordinate in d + 1 dimensions and you have integral d omega d and we

are interested in calculating integral d omega d and that is the trick we are utilizing. So, what

is J then I have also so here times e to the - y1 square to y d + 1 square now this is correct.

So, this is J; J is equal to this which I have written in this form.

Now this is equal to what is this I can evaluate by using this gamma function. You see I have

an integral 0 to infinity d t e to the - t square 2 z - 1 that is half gamma. So, this gives you half

of gamma d + 1 over 2. Let us check 2 z - 1 is equal to d. So, z is equal to d + 1 over 2 that is

why I have put gamma of d + 1 over 2 because that is what you have here gamma z good. So,

this times integral d omega d nice.

But now I should evaluate J in a another way so that I can equate these two results and get the

expression for d omega d and the idea is that you look at this integral as d + 1 integrals I

mean the same integral repeated d + 1 times. So, what you have to do is you write J is equal

to integral d y so you can think of this as d y 1 e to the – y 1 square, but then d by 2 e to the -

y 2 square that is exactly the same integral as this one.

So, this is repeated d + 1 times and what is the value of this integral? The value of this

integral here is root pi that is the Gaussian integral that gives you root pi power d + 1 which

is same as pi power d + 1 over 2. So, J is pi power d + 1 over 2 and J is also half gamma d + 1

over 2 times integral d omega d.
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So, from this I can just extract integral d omega d the volume integral which is 2 pi power d +

1 half sorry d + 1 over 2 over gamma d + 1 over 2. Now let us check whether this is correct

result, but before that you notice that the moment you have this right hand side no one can

stop you from putting d to be a complex number because gamma function is defined for a

complex number and pi you can raise to some complex value.

So, the right hand side can be continued to complex values of d even though the left hand

side looks like even though the left hand side can be evaluated only for d integral values, but

right hand side is also we can continue to a complex plane. So, with this we have now written

I in terms of these functions which all can be continued to complex d and complex N plane

okay, but before that let us test whether this result is correct.

So, I put d = 1 and d = 1 means I have only one angular variable and when I integrate over

this I know what I should get I should get 2 pi and theta goes from 0 to 2 pi that is the

contribution you get. So, let us test whether this is correct so 2 pi power d is 1, 1 + 1 2 over 2

is 1 so that is pi over gamma 1 gamma 1 so gamma n where n is an integer is n - 1 factorial so

that is 0 factorial which is 1 so it is 2 pi.

So, that is a correct result also let us check for d = 2 so you have now two variables theta and

phi. So, here you had only 1, here you have theta and phi and you already know what the

result is it is 4 pi that is the angular integral gives and that is/has why you have 4 pi r square

as the volume of a sphere of radius r it is this 4. So, you get 2 pi d = 2 so 2 + 1 3 over 2 over

gamma 3 over 2.



I will use another useful result which I can write here gamma of let me write this way z

gamma z is gamma z + 1 if you want to increase the argument of gamma by 1 you multiply it

with z with the same argument that is what gives you gamma z + 1. So, let us use that so this

is 2 root pi into pi that is pi 3 halves over gamma 3 half is gamma 1 + half this is half gamma

half because of this property. So, you have half gamma half now gamma half is root of pi.

So, also let me keep it here so what do we get? We get here 2 root pi into pi over half gamma

half is root pi that cancels and this is 4 pi which is what we expected. So, it means that the

formula that we have found is correct and integral d omega d - 1 is equal to 2 pi d I should

replace by d – 1. So, that kills that 1 and I have d over 2 over gamma d over 2. So, now I will

substitute all these expressions so integral d omega d - 1 from here.

And where is it and this expression of this rho integral which is here given in this form and

these factors. So, this one using this formula gives you gamma of N - d over 2 over gamma

N. Now I will substitute all these things here and get the following.
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I d N, M let me record the entire thing here for later use 2 pi power d 1 over - k E square - M

square power N and this is equal to - 1 power N did I change the result – 1 times 1 over 4 pi

power d over 2 times M square power d over 2 - capital N then you have gamma of N - d

over 2 divided by gamma N. So, that is the result, but this is in Euclidean space if you are

looking at one loop then you have one power of d, you have one time component d k 0.



And that will bring a factor of I so you will have a factor of 5 this expression was written in

the Euclidean space, in the Minkowski space, but let us keep the Euclidean. So, now you see

that the conclusion is that Feynman integrals can be continued in two complex d complex

dimensions or complex and we used to call it small n earlier, but now I am calling it d. So,

this is good so two things achieved.

One that I can write it as a expression in d and now you see that the singularities are

contained in these gamma functions, all the singularities are contained in here d is acting as a

regulator so that you do not have our naked divergence sitting here, it is not just I have

infinity, but it is regulated and that singularity I can recover by going close to d equal to 4.

So, this is a good situation we are in at least we can regulate the integral.

But this does not solve any of our problems because at the end I should take d equal to 4 and

everything is divergent and next thing is to learn how to remove the infinities. We will see

that in the next video.


