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Welcome back. We were discussing about groups in the last video. And although we do not
have a lot of time in this course to discuss about groups in detail, but avoiding it causes lot of
trouble. So what I will do is make our discussion enough so that things are a bit easier, okay. So
that is the plan. So I will continue with the discussion of groups and if you recall, we have already
defined what a group is, okay.

• Group multiplication is defined, for abelian group

a · b = b · a

• G = {−1, 1}, multiplication: ordinary multiplication.

• Lorentz transformation forms a group.

• Proper orthochronous Lorentz transformation forms a subgroup.
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And in that definition, there was only one operation that was defined okay, that the set has,
there is an, there is a multiplication that is defined on that set, okay. So you can multiply two
elements okay, just a second. There was some noise from outside, still is. Anyhow, so there is
only one operation that is defined which is what we call multiplication, okay. And in general, if
you multiply an element A times element B okay, it will give you some element C.

But multiplying in the reverse order B times A may not give you C okay. In some special cases
it can happen, but in general it will not happen. So when it happens that A times B is B times A
for all the elements that is called an Abelian group, okay. Meaning for all elements A and B this
is true, okay. And in general, the groups are not Abelian. So they are called non Abelian groups,
okay.

Recall that I gave a simple example, where a group G was containing just two elements 1
and -1 and the multiplication was defined to be an ordinary multiplication right, between real
numbers. And this formed a group because all the four properties of a group were satisfied by
these two elements, okay. And we have also seen that Lorentz transformations form a group.

We also noted that if you take a subset of Lorentz transformations, which is proper or-
thochronous transformations, remember that is the one which determinant of a matrix equal
to 1 and lambda 00 term to be positive, okay. Those set of elements also formed a group under
the same multiplication law, under the same multiplication. And that is it so happens you say
that the subset forms a subgroup of the bigger group.

So proper orthochronous transformations form a subgroup of, form a subgroup okay of the full
set of Lorentz transformations, okay. And remember, you have to have the identity element. So
this subgroup should have the identity element of the full Lorentz group, right. So this identity
element has to be shared with all the subgroups if there are more than one subgroups in the full
group, okay.

So that is what we discussed. Now I will do a few more examples so that we understand better
about groups and groups is a very useful mathematical tool or language that we will use or we
use in quantum field theory, okay. So even though I may not, in fact I will not be talking about
all the groups that are discussed now in this course.

But it is nevertheless useful to have them you know learn in the beginning of the course on
quantum field theory. So when we have another course on quantum field theory, which I plan
to have, these things we can directly use, okay? So let me give you a few examples. So think
of the following. Suppose you take all the numbers which are given by this okay, where theta is
a parameter, real parameter. Theta is real so it is a parameter; i is the square root of -1, okay.
So let us call these numbers as u of theta. So I am looking at the set of all numbers, which are
written as e to the i theta, okay, where theta takes real values. Now I claim that this forms, this
set forms a group. All these elements form a group, okay. So let us check about closure.

So and by the way, you should ask what is the multiplication I have defined. Unless I define
that there is no meaning to talking about a group. And multiplication is ordinary multiplication
between complex numbers. So that is the multiplication law that I have, okay. So let us see
whether closure is satisfied. So I take an element u of theta 1, multiply with element u of theta 2.

Then what I get should be again an element of, again an element within the same set, okay.
So let us check that. It is obvious because this is e to the i theta 1, sorry, times e to the i theta 2.
This I can write as e to the i theta 1 plus theta 2. And theta 1 plus theta 2 is again a real number,
which means e to the i theta 1 plus theta 2 does belong to this set, okay. So closure is true.
Associativity is true, because multiplication of complex numbers is associative multiplication, so
that is also true. Then identity, do we have an identity element? Yes of course, if I put theta
equal to 0, then I have 1, okay. And 1 times e to the i theta gives you again e to the i theta. So
theta equal to 0 corresponds to the identity element, so there is an identity element. Associativity
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is true, closure is true.
Do I have an inverse for each element? And that is also true that we have. So suppose I am

given an element e to the i theta, okay? Then e to the i minus theta. This guy when you multiply
with e to the i theta gives you identity, okay? And that is true for any theta. So we do have an
inverse for all the elements, okay. So this forms a group, this set of numbers form a group and
this has a name, it is called U(1), okay.

Figure 2: Refer Slide Time: 05:25

Example of groups
Example:1

u(θ) = eiθ ; θ is real and i =
√
−1 (1)

Multiplication:Multiplication of complex numbers

• Closure: u(θ1) · u(θ2) = ei(θ1+θ2)

• Associative

• Identity: θ = 0 will correspond to identity element which is ei0 = 1

• Inverse: e−iθ, e−iθ · eiθ = 1

This group is called U(1). 1 meaning you have only one independent parameter which is theta
here. So it is one dimensional basically, okay. So there is only one parameter theta, that is why
you have 1 here. And u means unitary. By that I just mean that if you take a u dagger multiply
with u, you get 1. But here, this dagger is superficial because it is just complex conjugation, okay.

So the name u comes from unitary. So you can call it a unitary group of dimension one. I
have not defined what is a dimension, but unitary group of 1x1 matrices you can call it like this,
okay? So that is one example, which is okay. Now let us move on to something else. Now I want
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to talk about another group. So let me say this is example number 1. Now let us look at example
2. Now show that, which is an exercise, this example 2 is an exercise. Show that all 2x2 unitary
matrices form a group, and multiplication I should specify under matrix multiplication, all okay.
So that is what you should do. So take all 2x2 matrices and show that their set forms a group.
So what you have to do is check whether if you multiply two matrices which are unitary and 2x2,
whether they give you again a 2x2 matrix, which is unitary.

That should be easy to check. Then second is associativity that is automatically satisfied
because matrix multiplication is associative, so that is done. Third is identity and of course you
know identity matrix 2x2 will serve you, will serve as an identity in this in the set. And fourth is
inverse. So you should be able to convince yourself that for each 2x2 unitary matrix there exists
an inverse, okay.

And if this is true then this set will form a group, okay. Another exercise which is an example
and also an exercise. So by the way this one is called U(2) okay, set off all 2x2 unitary matrices.
So it is a group of 2x2 unitary matrices, okay. Now show that if you take a subset of this and
which is the following.

So you take all the 2x2 matrices, 2x2 unitary matrices whose determinant is 1, okay. Then this
also forms a group under matrix multiplication, so it means it forms a subgroup of U(2), okay.
And that is what you should be able to do, not difficult. So here the only additional thing is you
have to check that if you multiply two matrices which have determinant 1, what you get is again a
unitary matrix with determinant 1, okay.So that should be easy and if I remember that was yeah,
that also happened in the case of Lorentz transformations when you were looking at the proper
orthochronous part of it, okay. So it is the same kind of same exercise here. Now let us look at
SU, a more generalized version of this. In fact, there is not much to prove. If you have done the
two and three, this one is automatic

Figure 3: Refer Slide Time: 10:01

This forms a group called U(1), U → Unitary group.

• Exercie:1 Show that all 2x2 unitary matrices form a group under matrix multiplication
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named U(2)

• Exercise:2 All 2x2 unitary matrices with det = 1, forms a subgroup of U(2) names SU(2).

• Exercise:3 Show that all NxN matrices form a group named U(N)

• Exercise:4 All NxN unitary matrices with det = 1, forms a subgroup of U(N) named SU(N)

SU(N)

Show that all NxN unitary matrices form a group, okay. Same reasoning will give you. And this is
called U(N). U stands for unitary and N for NxN matrices, okay. And obviously, you can expect
that if I look at a subset of this, where the determinant is 1 for all the matrices it will also form
a group. So all the elements in the group which have determinant U equal to 1 will also form a
group.

And that is a subgroup and this one is called SU(N). So U is for unitary. N is for NxN and
S means special, okay. And why it is special? It is special because determinant U is 1 for those
elements, okay. So it is called special unitary matrices, okay. So please show that this SU(N)
is a subgroup of U(N), that you should be able to show. Now I will talk a little more about
SU(N). So right now we are doing pure mathematics. Physics will come after some time, but this
is important. So let us look at SU(N). They are unitary matrices, which means U dagger U is
equal to U U dagger and that is equal to 1, okay. But on the top of it, we said special unitary,
which means determinant of U is also equal to 1, okay.

Right now when I am writing U, U is an arbitrary element of these groups okay, of SU(N),
okay. So I am denoting the elements of the group by this capital U, okay. So now what I want to
do is I want to see how to generate all the possible elements of this group, okay. That is what I
want to do. I want to understand how to get all the elements of this subgroup or group. So let us
see. What we will do is the following.

Figure 4: Refer Slide Time: 15:20
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U †U = 1 ; detU = 1 (2)

How to get the elements of this group, N2 complex entries that will give 2N2 real entries

Constraints

So if you have NxN matrix, how many entries you have? You have, so if you count all of these,
this is NxN, so it will be N square entries. Now each N square entry is complex, okay. So when I
am looking at an arbitrary complex NxN matrix, see I am starting with the most general thing,
what is the most general NxN matrix, which I can write, which is complex? It is this.

It will have N square complex entries, okay. So the most general, right now this is not unitary,
I have not imposed any constraint, I am just writing NxN complex matrices. So you have in total
N square complex entries. But each complex entry is a sum of two real entries, right? So if this
one let us say I call z1, and z1 is x1 plus iy1. So x1 and y1 they are in your hands right, that you
choose.

So these are 2 real numbers. So when you are looking at NxN complex matrix, you have
freedom to choose 2N square real numbers or parameters, okay. So these are, there are 2N square
real parameters that parameterize this matrix, okay. That is good. Now I want to know about
SU(N). So what I will do is I will count how many constraints there are, okay.

So given total number of parameters that I have, minus the total number of constraints, that
will give me what are the total number of independent parameters t will parameterize a SU(N)
matrix, that is what I am doing. So let us see constraints. So first constraint is easy, determinant
U is equal to 1. So as I said, we have to count the constraints that we have.

So we are going to look at U dagger U equal to 1, what constraint it gives and what constraints
you get from determinant U = 1. So determinant U = 1 let us do that one first. So U dagger
U equal to 1 implies that if you take the determinant of the matrix U, it will be a phase. It will
be e to the 1i alpha, okay? Because when you are taking a determinant of this, it will become
determinant of U times determinant of U dagger, okay.

And on the right hand side, it is a unit identity matrix or determinant of identity will be 1.
And this gives you determinant of U modulus square is equal to 1 which means determinant of U
is a phase okay, e to the alpha. So that is true in general for unitary matrices. But now we have
on the top of it put a constraint that determinant of U should be 1, which means that this phase
is not arbitrary anymore, and you have to restrict it, okay?

And let us take it to be alpha equal to 0. You are allowed, you cannot continuously change
it. This parameter alpha you cannot continuously change, it has to be phased. So let us take it
to be alpha equal to 0. So that is one constraint, okay. Out of all the different parameters that
parameterize this matrix U, one freedom is lost, okay. So there is one constraint. Now let us see
what else we get from this piece.

Let me also remove the timeline. So let us see. Now I am going to do, I am going to find the
constraints in two parts. One I will look at what happens on the diagonal, okay, and then I will
look at what happens on to the remaining entries. So let us look at the diagonal entries. So I take
UU dagger and take, see an arbitrary element will be alpha, beta, or yeah let us call it alpha and
beta.

But now I am not looking at alpha and beta. I am looking at alpha alpha. And this is your
delta alpha alpha, okay whatever that number is. And that number you know it is 1 because it
is unity, okay. So I am looking at only the diagonal entries. Now UU dagger, you can write as U

6
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alpha beta U dagger beta alpha. Okay, there is no summation over alpha. I am not implying any
summation, okay.

detU = 1 and

UU † = 1 ⇒ detU = eiα : α = 1, hence 1 constraint (3)

Let’s look at diagonal entries

(UU †)αα = δαα (4)∑
β

Uαβ(U †)βα = δαα (5)∑
β

Uαβ(U?)αα = δαα (6)∑
|Uαβ|2 = δαα → N real equations (7)

(UU †)αβ = 0 ;α 6= β (8)

This is same as U alpha beta. Now U dagger is a star and a transpose. So if I put a star here,
and then I am only left with transpose and I do transpose by interchanging these two indices. It
becomes alpha beta. Okay, let me make it explicit here. This is a summation over beta but not
over alpha, okay. It is matrix multiplication so I have this, okay.

Now U alpha beta times U star alpha beta is just, and this is a real number. It is a modular
square of a complex entry. So U alpha beta are these entries, right? This entry, so this entry is
U12. So here we are saying that it is a sum of all these that has to be 1, okay. But each of this is
a real number, because it is modulus square of a complex number, okay.

So how many equations are these, how many constraint equations are these? I should not
remove, okay. So how many are these? You have n values of alpha, so alpha takes value 1, 2, 3
and so forth. Beta is anyway some lower. So these are N real equations, okay. So you have N
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constraints. So this is important because, unless I know that these equations are made up of real
numbers, I cannot say that these are N equation.

Then I will have to say 2N equations, because equation could be complex, right. So this is
what I have showed that there are N real equations as constraint coming from here. Now let us
look at off diagonal entries. Do I need more space? Okay, maybe here itself. So if I look at off
diagonal entries, so let us go back to this equation. You have UU dagger, alpha beta is 0 because
delta alpha beta is 0. And I am saying alpha is not equal to beta. Maybe I should go to the next
one. UU dagger alpha beta element of this is delta alpha beta and I am saying alpha is not equal
to beta that is 0, okay. Now this I write is U alpha gamma U dagger gamma beta is equal to 0,
okay. And so that is one equation. That is an equation and this is summation over gamma. So
how many alpha and beta I have, how many questions are these? See total there are alpha and
beta take values from N to N.

So we have already removed these entries right? So this out of N square these are gone. So
these are N of those. But then you realize that see let us say alpha is 1 and beta is 2 and I have
such an equation. So you have U 1 gamma U dagger gamma 2 is equal to 0, okay. Let me write
it down. U 1 gamma U dagger gamma 2 is equal to 0 and this is a sum over gamma. Now these
are complex numbers right, these ones.

So this is a complex equation, okay. So these are two real equations, one for the real part, one
for the imaginary part. So these are two real equations. But then we realized something else. Let
us look at not, so here right now here in this one I have taken alpha is 1, beta is 2, let us take
other way around. You take beta alpha this one, where alpha is 2 and beta is 1. Let us see what
happens.

Then you get U beta gamma U dagger gamma alpha equal to 0, okay. Now what I will do
is I will take this equation and take the complex conjugate of it. if I take a complex conjugate,
then I get U beta gamma star U. Okay, let me before I do a complex conjugation, let me write
it slightly differently. And also this one, this one I want to write as first. U alpha gamma U star
beta gamma, okay.

Because of the transpose I have taken care of already, I have interchanged the indices. And
that is what I want to do here. So I first write it as U beta gamma and U star alpha, gamma. So
I have taken care of conjugation transpose. Now I do a complex conjugate of this. So if x + iy is
a constraint, then x - iy is also right. It does not change anything.

If this one is saying x is 0, y is 0, this one is saying same thing and these are related by complex
conjugation. So I take complex conjugate of this and I get U beta gamma star U alpha gamma
equal to 0. And you see this one is exactly the same as this one U star beta gamma U alpha
gamma. So what has happened is when I instead of looking at one, two element here I looked at
to an element okay, they have become equal, they are same, okay.

They are related by actually complex conjugation, not equal but they are related by complex
conjugation. So that is not giving a new constraint to you. It is the same constraint, which is
appearing from this one also. So which means that all the constraints that you are going to get
from here is the same constraint you are going to get from this part. So this part does not give
you a new constraint.

It just tells you repeats the same constraint. So our independent constraints come from this
one, and this part, okay. And these are, that is fine, but also another point that these constraints
are not real, these are complex, okay? So how many are these? See, total was N square, out of
which if I remove the diagonal, I have -N okay. I am looking at only the upper half, because the
lower half is fixed by that.

So I should be looking at only this part. This is all the elements in here, but these are complex
equations. So each of them is two real equations, so I should multiply by 2 and that is N square
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minus N, okay. So how many constraint do I have? I have these ones N square minus N, total
constraints. I have N square minus N. But then I had one more coming from the determinant
part. So these are the total number of constraints. So N square minus N minus 1.

∑
γ

Uαγ(U
†)γβ = 0, take α = 1, β = 2 (9)∑

γ

U1γ(U
†)γ2 = 0 (10)

Other way

(UU †)βα = 0 take α = 2, β = 1 (11)

Uβγ(U
†)αγ = 0 → Uβγ(U

?)αγ = 0 (12)

Complex conjugate

U?
βγ(U)αγ = 0 (13)

Figure 6: Refer Slide Time: 30:07

Let me write total number of constraints N square minus N sorry plus 1. I should not write -1.
This is one additional constraint okay, plus one. Now let us see how many independent parameters
we have to parameterize a unitary matrix. So independent parameters that parameterize the
unitary matrix is to begin with we had N square complex parameters or 2N square real parameters.

Now I have these many constraints which I should remove and that gives you 2N square minus
N square is N square. So something has gone wrong, let us see. Nothing went wrong I just missed
a piece. So let me do this. Total constraints here these are from the upper half okay that is fine.
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This is not total constraint this is N square minus N. This is from the upper half part, which I
calculated here okay.

So now let us do it again. So total number of constraint is N square minus N. This is coming
from upper half plus you had N real constraints coming from the diagonal entries. Let us go back
right, this one. These were N constraints coming from the diagonal. So that is correct. Then you
have one more constraint because you have coming from determinant U = 1 from the phase part,
okay. That is what is here. So this is the one which I had missed, okay. So now I should write
2N square minus these two cancel, so this is N square plus 1 because this is gone and this is N
square plus 1. So this should be removed. So you have 2N square. 2N square minus N square is N
square minus 1, correct finally. Oh, good. So hope everything is fine. 2N square minus N square
is N square minus 1, that is correct, okay.

After the scare we have the right answer okay, which means that if I am looking at SU(2)
group, how many independent parameters I have? It is 2 square which is 4 – 1, which is 3. So 3
independent parameters. Okay, so 3 independent parameters parameterize the elements of SU(2)
group. How about SU(3). So let us see 3 square minus 1, 3 square is 9 minus 1, 8. So this is equal
to 8 independent parameters, okay.

N2 −N constraints, total constraints will be

N2 −N +N + 1 = N2 + 1 (14)

Independent parameters

= 2N2 − (N2 + 1) (15)

= N2 − 1 (16)

• SU(2) : 3 independent parameters

• SU(3) : 8 independent parameters

SU(N)

That is good. Now I want to talk about a little more about these groups. So let us go back and go
here. So I am now going to look at, so let us say I am looking at a unitary group, SU(N) group.

And I have already shown that it is parameterized by alpha N square minus 1 parameter. So
okay these are all the parameters that you have for SU(N). And I parameterize in such a way such
that in such a way that if all the parameters are equal to 0, you are sitting at the identity matrix
okay, if all the parameters are 0, right now not 0, so I am going to write more terms.

But you know you are at the identity element when all the parameters are 0. That is what
I am choosing as the way of parameterizing, okay. Now if you are slightly away from identity,
infinitesimally away meaning you choose the parameters alpha to be infinitesimals then you will
be slightly away from there and let us say that infinitesimal deviation you have from identity is
given by H.

And this is I am saying of order alpha okay. So this is linear in alpha. Plus all the higher
order terms which I will generically denote by order alpha square okay. Now let me look at what
U dagger would be of this. If I take a dagger I get minus iH dagger, okay. I am dropping the okay
let us keep it for a while. Now you know that you have the condition that these are unitary, okay.

This implies that if you take the product you will get 1 + iH. Now I am dropping the order
epsilon square terms, no sorry order alpha square terms and right now alpha infinitesimal, okay.
So alpha is infinitesimal. So I have 1 - iH dagger and this should be 1 identity and these are all
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identities. This gives you identity minus plus iH minus iH dagger plus a term which is HH dagger,
but that is of order first square, which I am dropping okay.

So I leave those pieces, this is 1. And this tells you that H is equal to x dagger, meaning H is
Hermitian. So the H has to be Hermitian, okay. Now I will write U as the following. So U alpha 1
to alpha N square minus 1 is 1 plus i. Now H is a Hermitian matrix, N cross a Hermitian matrix.
What I will do is I will write it as N square minus one independent Hermitian matrices.

So I will write it as a linear sum of Hermitian matrices. So now this H are constants, because
I have pulled out the parameter alpha. So this is the linear sum which will constitute the H for
you, okay. So summation over i, I am sorry there is another i here, but this i is different from this.
So this is running from 1 to N square minus 1 okay. Plus all higher order terms and alpha that is
there, okay.

Now exercise which is fairly easy. Check that determinant U = 1 imposes a constraint on H.
See U is 1 plus these numbers which you can put whatever you wish to okay, times H. So H is the
object which should know that you know U is unitary. And it knows that by this property that H
has to be Hermitian. So but then it should know more. It should know that determinant U is 1.

So there should be something else which H has to satisfy and that is the fact that H is traceless,
okay. So check that determinant U = 1 implies that H is traceless. Please do this exercise and these
H are called the generators. So H i’s are called the generators, generators of SU(N), okay. These
traceless Hermitian matrices are called generators of SU(N). So for SU(2) you have 3 generators.

For SU(3) you have 8 generator. So SU(2) you have 2 generators, which are traceless Her-
mitian matrices. And for SU(3) you have 3 generators, which are traceless Hermitian matrices.
Okay SU(2) and SU(3) are important groups because your entire understanding of fundamental
interactions okay, that of that is electroweak interactions and strong interactions.

They are based on SU(2), U 1 and SU(3), okay? So that is why I am discussing here. I mean,
not because I am going to cover those interactions here. But it is useful to know these things,
okay? And that makes also understanding Lorentz algebra Lorentz group easier. Or rather, it
is needed to understand that group, okay. So now I have said that there are three Hermitian
traceless matrices for SU(2), okay. I want to construct those generators for SU(2).
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U(α1 · · ·αN2−1) = 1 + iH +O(α2) (17)

U †(α1 · · ·αN2−1) = 1− iH† +O(α2) (18)

(19)

UU † = 1 (20)

(1 + iH)(1− iH†) = 1 (21)

H = H† , H is hermitian (22)

Now

U(α1 · · ·αN2−1) = 1 + i
N2−1∑
j=1

αjHj (23)

Figure 8: Refer Slide Time: 40:57

Exercise : Check that detU = 1⇒ H is traceless, Hi are called the generators of SU(N).

• SU(2) : 3 independent parameters

• SU(3) : 8 independent parameters

So I want to pursue SU(2) further and construct the generators. And you are going to see
something nice if you have not already seen that before. So let us write arbitrary Hermitian matrix
as this. So let us call it z 1, z 2, z 3, z 4. Okay, that is an arbitrary matrix, complex matrix, 2x2
matrix. But then I say that H dagger should be same as H. So H dagger is H 1 star, sorry z 1
star, z 2 star, z 3 star, z 4 star.
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That is the dagger of it, Hermitian conjugate of it. And the fact that H dagger is equal to H
gives you the following that your H is this. So z 1, this should be equal to z 1 star, which means
just a second I should remove it. So z 1 is equal to z 1 star, which means this entry is real. And I
want to call it a real number. I will call it gamma, okay. So gamma is real. Then I have z 4 star,
which is, has to be same as z 4.

So that is also going to be real and I call it something, let us call it beta. So beta is located
here okay, at this place, okay. But then I remember that my matrix has to be traceless. So gamma
plus beta should be 0, which means beta is minus gamma. So I will put a minus gamma here,
okay. And then you have a z 3 star or sorry z 2 here. So I write z 2. And here, instead of z 3 I
should write z 2 star.

So z 2 here and z 2 star here, so they are complex conjugates of each other. So for z 2, I write
alpha minus i beta, alpha minus i beta. And here it is complex conjugate. So I write alpha plus i
beta, okay? If you had put a plus sign here and a minus sign there, and nothing changes, okay?
It is just the parameters, you can change the sign later. So there is no nothing big going on here
in choosing the signs.

So that is my Hermitian matrix. I have taken care of H, it be Hermitian and also tracelessness.
So I can write it as the following, gamma. Okay maybe, let me write it slightly better. So I take
the alpha part, so alpha, and I put everything else to be 0. So I put all the parameters to be 0
and I have only alpha. So I get 0 1 1 0. Then I have beta. So I keep only beta non zero, and
everything else 0, then I get 0 -i i 0 plus gamma.

That is only on the diagonal. And that is 1 -1 0 0. Okay, does that appear familiar to you,
these matrices? So these are the Pauli matrices. So this one is sigma 1. This one is sigma 2.
This one is sigma 3. So note that sigma 3 is the one which is diagonal, okay. And you already
know that they do not commute. So you can multiply these two and different orders and check
the difference, that will not be 0.

So matrices do not commute in general. So let me write. So there is sigma 1, sigma 2 and
sigma 3 these are Pauli matrices. So you see why you have gotten these matrices. These are
basically the, apart from some factors these are the generators of Pauli matrices, sorry generators
of SU(2). Okay good. Now check that if you take sigma i over 2, I am dividing by half, you will
see immediately why. Sigma j over 2 and look at this commutator. You get i epsilon i j k sigma
k. This I believe you have seen in your quantum mechanics course, okay. If I do not put a 2
here, it will start showing up here on the right hand side. So that is why there is a factor of half.
So this is the commutation relation with which these matrices obey. And you have already seen
this in a previous class, let us see. I think somewhere here. The same commutation relations you
have seen. You see the commutation relations of j i and j j they are exactly the same right? It is
again you have i epsilon i j k okay. And so you can understand that these commutation relations
are, of SU(2) are important even for Lorentz group, okay. So now any element of SU(2) can be
parameterized using Pauli matrices.

I will jump a bit okay I will again come back to that later, but I will just say here without
telling you why I am saying this. That any matrix of SU(2) can be written as e to the i, some
parameter let us call alpha i sigma I can put i up there is maybe a k, sigma k over 2. So there is a
summation over k okay. So you have alpha 1 sigma 1 over 2 plus alpha 2 sigma over 2 plus alpha
3 sigma over 3 okay, And these are the generators. These are the generators of SU(2). See H was
generator here. You can always multiply a half here right, you can overall and absorb the 2 in
alpha, beta and gamma. So you take these as the generators because then commutation relations
are nice like this. Otherwise, there will be a factor of 2 coming. Also check the following.
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Figure 9: Refer Slide Time: 45:57

Constructing the generators of SU(2)

H =

(
z1 z2
z3 z4

)
, H† =

(
z?1 z?2
z?3 z?4

)
(24)

H = H†, real entries (
γ α− iβ

α + iβ −γ

)
, α + β = 0 (25)

H = α

(
0 1
1 0

)
+ β

(
0 −i
i 0

)
+ γ

(
1 0
0 −1

)
(26)

H = ασ1 + βσ2 + γσ3 (27)

(σ1, σ2, σ3): Pauli matrices and these Pauli matrices are the generators of SU(2).
Exercise: [

σi

2
,
σj

2

]
= iεijk

σk

2
(28)

Any SU(2) matrix can be written as

eiα
k σk

2 −→ generators of SU(2) (29)

T a =
σa

2
−→ generators of SU(2) (30)

Exercise:

tr(T aT b) =
1

2
δab (31)
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Figure 10: Refer Slide Time: 46:47

Check that if you take the trace of let me call the generators to be T a and which is sigma a,
sorry sigma a over 2, okay. So this Pauli matrix is divided by half, they are called the generators
and usually they are denoted by T a, okay generators of SU(N) groups are denoted by T a. That
is a standard nomenclature. So show that if you take T a T b and if you take a trace of it, okay.

Then what you get is delta ab, is proportional to delta ab. In fact, it is half delta ab, okay.
Check this property that this is indeed true, okay.
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