
Solid State Physics
Lecture 7

Diffraction Condition

Hello, we were discussing reciprocal lattice vectors and while discussing reciprocal lattice vectors.
We defined

−→
b1 ,
−→
b2 and

−→
b3 the axis vectors in reciprocal lattice. (Refer Slide Time: 00:40)

And we have also mentioned the condition that
−→
bi · −→aj where −→aj are the real lattice axis vectors this

must be 2πδij . So, Kronecker δij as you already know equals 1 if i = j and this is 0 sorry it is 1 if
i = j, it this is 0 if i 6= j. So, we must see why this condition is necessary for the reciprocal lattice vec-
tors. For our arbitrary function n(−→r ) that we have considered in three-dimension, we represented this
as a Fourier series and that was Σ−→

G
, these are the equivalent of translation vectors in reciprocal lattice.

Thus so called reciprocal lattice vectors n−→
G

, the Fourier coefficients exp (i
−→
G · −→r ). Now, if we con-

sider a translation in real space
−→
T = u1

−→a1 + u2
−→a2 + u3

−→a3 . If we considered this kind of a translation,
then subject to this translation our function n(−→r ) must remain invariant that means, n(−→r +

−→
T ) must

be equals n(−→r ). Now, let us see what this quantity is according to this definition of the translation
vector. This quantity can be given in terms of the Fourier series as Σ−→

G
n−→
G

exp (i
−→
G · (−→r +

−→
T )) which

essentially becomes Σ−→
G
n−→
G

exp (i
−→
G · −→r ) exp (i

−→
G ·
−→
T )this. And if this quantity has to be n(−→r ) that

is given like this expression here that is basically this part, then this part has to be 1 in other words,
in order to satisfy the conditions that we have laid down, exp (i

−→
G ·
−→
T ), this has to be 1 and in order

to this be 1, we require
−→
G ·
−→
T , this quantity to be 2πm where m is an integer so, this is the condition

we have. (Refer Slide Time: 05:15)

How can we satisfy this condition? So, how do we represent
−→
G in the reciprocal lattice? Just like

−→
T in

the real lattice, we represent
−→
G in the reciprocal lattice as v1

−→
b1 +v2

−→
b2 +v3

−→
b3 . So, with this definition

of
−→
G in order to satisfy

−→
G ·
−→
T = 2πm. This is the condition that we found to be necessary to have the

periodicity in the crystal we require that
−→
bi · −→aj = 2πδij . If we have this condition satisfied, then we

will have the boxed condition here implied from that ok. After discussing this much, we should now
see how the diffraction takes place in a lattice. Earlier, we have derived Bragg’s law, the way Bragg
did it earlier considering reflection from crystallographic planes, but in reality, it is not reflection it is
diffraction. So, we must see how the diffraction takes place and how we can understand the physics
by working out the mathematics related to the diffraction. (Refer Slide Time: 06:52)

So, we consider a crystal specimen here looking something like this of any arbitrary shape and we
consider some incident wave coming and falling here, it gets scattered, maybe goes along this direc-
tion, incident wave comes like this, get scattered here sorry I could not draw it parallel, I want to
make it parallel something like this. So, this is the incident wave of the wave vector

−→
k and this is

the scattered wave of wave vector
−→
k′ . Let us say, here is the origin and from this origin, this point

of diffraction is placed at a position vector −→r . We consider a volume element here like this and we
draw a perpendicular wavefront like this so, this angle must be 90◦. Similarly here, we draw a per-
pendicular wavefront where this angle must be 90◦. This volume element we call dV and this is our
crystal specimen. The incident beam maybe represented with the waveform e(i

−→
k ·−→r ) and the outgoing

beam here that may be represented with e(i
−→
k′ ·−→r ) and here, the difference between

−→
k and

−→
k′ . So,

−→
k is somewhere along this direction,

−→
k′ is somewhere along this direction, this vector is ∆

−→
k . So,−→

k′ −
−→
k = ∆

−→
k . So, we consider diffraction of wave in this crystal specimen as we can see in this

figure and the difference in the phase factors of the incident and the diffracted wave, scattered wave
that can be represented as exp [i(

−→
k −
−→
k′ ) · −→r ]. This is the difference in phase factor ok and this is for

the beams hitting at a distance r apart separated by a vector−→r . Now, the wave vectors of the incoming
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and outgoing beams as we have marked here k and k prime so, we assume that the amplitude of the
waves scattered from the volume element here dV is proportional to the local electron concentration
in the specimen. So, if we have n as the electron concentration it is of course a function of −→r , it is
the local electron concentration. It is no longer the arbitrary function that we have considered in case
of Fourier transform. So, this is the local electron concentration and when some photon gets reflected
sorry scattered, it depends its scattered amplitude depends on the local electron concentration in there
so, n(−→r ) is going to be important. The total amplitude of the scattered wave in the direction of

−→
k′

that is proportional to the integral of n(−→r ) that is the local electron concentration times this phase
factor that we have considered. So, the amplitude of the electric or magnetic field wave vector in this
scattered electromagnetic wave is proportional to the integral of n(−→r ) times the phase factor so, that
thing we can calls scattering amplitude. (Refer Slide Time: 13:32)

Let us go to a new page, let us define this term scattering amplitude, it is called F. So, F can be given as∫
dV , the volume element n(−→r ) that is local electron concentration times exp [i(

−→
k −
−→
k′ ) · −→r ]; this

quantity which if we write ∆
−→
k for this (

−→
k −
−→
k′ ) can be written as this. So, ∆

−→
k measures the change

in wave vectors so, ∆
−→
k is called the scattering vector. Now, we introduced the Fourier components

of n(−→r ). So, n(−→r ) is here the local electron density, but in a periodic crystal, it is also a periodic
function therefore, the same kind of Fourier transform, Fourier series that we have discussed earlier
is applicable for n(−→r ) as well. Now, if we write n(−→r ) in terms of the Fourier series, we can write
F = Σ−→

G

∫
dV n−→

G
exp [i(

−→
G −∆

−→
k ) · −→r ]. Let us discuss two situations, 1st

−→
G = ∆

−→
k . If we have

this kind of a situation, what do we get? You can clearly see that the argument of this exponential
goes to 0 in this condition and if the argument of the exponential goes to 0, the exponential gives us 1
so, in this condition, F will be nothing but V n−→

G
, this would be F. And the 2nd condition is certainly

−→
G 6= ∆

−→
k . If

−→
G 6= ∆

−→
k that is if ∆

−→
k differs significantly from any reciprocal lattice vector, then F

becomes negligibly small, F is nearly 0 in this condition and it is a homework for you to show this.
(Refer Slide Time: 17:34)

Now, in case of elastic scattering of a photon, its energy is conserved so, its energy is h̄ω that quantity
is conserved and the diffracted beam let us say has a frequency ω′ which is c that is the velocity of
the photon times the |

−→
k′ | and that must be ω because the energy is conserved and this ω′ times h̄ is

the same as ω. So, conservation of energy requires the |
−→
k | = |

−→
k′ | although, they may be at different

directions that is allowed in other words,
−→
k 2 =

−→
k′ 2. And we have earlier seen that for a diffraction

pattern a bright spot we need ∆
−→
k =

−→
G for non-vanishing scattering amplitude. And if ∆

−→
k =

−→
G ,

we can write (
−→
k +
−→
G)

2
=
−→
k 2. Remember ∆

−→
k is nothing but

−→
k −

−→
k′ and we can also recast this

equation in the following form 2
−→
k ·
−→
G +

−→
G 2 = 0. Now, if

−→
G is a reciprocal lattice vector, −

−→
G is

also a reciprocal lattice vector, negative of
−→
G is also a reciprocal lattice vector and we can as well

call it
−→
G , there is no difference. Therefore, we can also write 2

−→
k ·
−→
G =

−→
G 2 by putting

−→
G = −

−→
G

and this expression is often used as the diffraction condition. Although, every statement that we have
here, starting from here, all these are diffraction conditions, this is particularly useful in many cases
ok. In fact, from this diffraction condition, we can find out Bragg’s law. So, your homework would
be to show to prove Bragg’s law from the diffraction condition.
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