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Hello. Earlier we discussed about crystal field and its consequence on the magnetic properties of a
material. Mostly 3-D and other d-elements or f-elements transition metals in their magnetic proper-
ties. Now, we shall discuss about the influence of orbital angular momentum rather the quenching of
orbital angular momentum. Orbital angular momentum is a fundamental property of an electron and
therefore, it must have implications on the magnetic properties, but in case of 3-D transition metal el-
ements, the orbital angular momentum usually gets quenched. We will try to understand why. (Refer
Slide Time: 01:10)

In an electric field directed towards the fixed nucleus, the plane of classical orbital is fixed in a space.
So, all the orbital angular momentum components that is Lx, Ly, Lz; they would be constants.
But in quantum theory, one angular momentum component we usually take it as Lz and the square
of the total angular momentum that is L2; these are constants in central field; that means, Lz and
L2, these two quantities are constant in quantum theory. These two operators have simultaneous
eigen states and Lx, Ly, Lz; they would be constants only in classical theory. If we consider a
non central field, the plane of the orbit will move around the angular momentum components and
it is no longer constant and may average out to 0; if we consider a non central field applying on it.
In a crystal, Lz will no longer be a constraint of motion. Although to a good approximation, L2

can be a constant of motion. When 〈Lz〉 = 0, the angular momentum is said to be quenched. So,
〈Lz〉 = 0 means, orbital angular momentum quenched. The magnetic moment of a state is given
by the average values of the magnetic moment operator; that is expressed as µB(
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magnetic field along the z-direction, the orbital contribution to the magnetic moment is proportional
to the quantum expectation value of Lz. The orbital magnetic moment is quenched, if the mechanical
moment Lz is quenched. As an example, we consider a single electron with orbital quantum number
L = 1; just we take an example of this single electron. It is moving about a nucleus and the hole
being placed in an inhomogeneous crystalline electric field. And we do not consider the electron
spin in this case, because that is not useful. So, we have an inhomogeneous crystalline crisp electric
field. Now, in a crystal of orthorhombic symmetry, the charge of neighboring ions will produce an
electrostatic potential about the nucleus. We can write that electrostatic potential multiplied by the
charge of an electron the charge of a proton eφ = Ax2 + By2 − (A + B)z2,phi is the electrostatic
potential Here, A and B are constants. This expression is the lowest degree polynomial in x, y and z
which is a solution of the Laplace equation. The Laplace equation would be ∆2φ = 0 that a potential
electrostatic potential must satisfy. And this would be the lowest order polynomial solution that is
allowed for this Laplace equation. And this is compatible with the symmetry of the crystal. In free
space, the ground state is three-fold degenerate with magnetic quantum numbers mL = 1, 0 and -1.
This is valid in free space. In a magnetic field, these levels are split by energies proportional to the
magnetic field B. In a crystal, the picture may be different. (Refer Slide Time: 07:43)

We take as the three wave functions associated with the unperturbed ground state of the ion. We take
three potentials Ux. We take three wave functions; Ux = xf(r), Uy = yf(r) and Uz = zf(r). These
wave functions are orthogonal and we assume that they are normalized. Each of the U’s can be shown
to have the property that L2Ui any of these U’s. I can take values from x, y and z. L2Ui = L(L+1)Ui;
that means, that is the same as 2Ui, where L2 is the operator for the square of the orbital angular
momentum and we have written it in the units of h̄. The results confirm that the selected wave
functions are in fact, p functions, p orbitals having L = 1. We observe now, that the U’s are diagonal
with respect to the perturbation as by symmetry, the non-diagonal elements vanish. The non-diagonal
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elements would be like 〈Ux|eφ|Uy〉 = 〈Ux|eφ|Uz〉 = 〈Uy|eφ|Uz〉 = 0. Let us consider an example.
〈Ux|eφ|Uy〉 =

∫
xy|f(r)|2[Ax4 +By2x2− (A+B)z2x2]dxdydz. This quantity is A(I1−I2). We can

write it in this form, if we define I1 =
∫
|f(r)|2x4dxdydz. And I2 =

∫
|f(r)|2x2y2dxdydz. Clearly,

they would be equal and this difference goes to 0. And additionally, we can write 〈Uy|eφ|Uy〉 =
B(I1 − I2) doing similar algebra. And 〈Uz|eφ|Uz〉 = −(A + B)(I1 − I2) this is what we obtained.
The three eigen states in the crystal field are p functions, as we said earlier with their angular lobes
directed along x, y and z directions. (Refer Slide Time: 13:07)

The orbital moment of each of the levels are 0, because we can we know that 〈Ux|Lz|Ux〉 = 〈Uy|Lz|Uy〉 =
〈Uz|Lz|Uz〉 = 0. The level still has a definite total angular momentum, since L2 is diagonal and gives
L = 1, but the projection goes to 0, but the spiral component of the angular momentum are not con-
stants of the motion and their time average is 0 in the first approximation. Therefore, the components
of the orbital angular momentum also vanish in the same approximation. The role of the crystal field
in quenching process is to split the originally degenerate levels into magnetic levels separated by an
energy. The energy is� µH , because that comes from crystal fields; so that, the magnetic field is a
small perturbation in comparison with the crystal field. Magnetic field. When the magnetic field is
a small perturbation compared to the crystal field, then the orbital angular momentum quenches and
that happens most of the times in a crystal. At a lattice site of cubic symmetry, there is no term in
the potential of the form of eφ that we mentioned here. If we have cubic symmetry, there is no term
in the potential of this form; that means, quadratic in electron coordinates that kind of term does not
exist for cubic symmetry. Now, the ground state of an ion with p-electron or with 1 hole in the p shell
whatever; that has similar kind of wave function will be triply degenerate; however, the energy of
the ion will be lowered, if the ion displaces itself with respect to the surroundings that; that means, it
creates a non cubic potential effect which was shown earlier. Such a spontaneous displacement of an
ion is known as the Jahn-Teller effect. Jahn-Teller effect is a spontaneous displacement of an ion that
has a consequence on the quenching of the orbital momentum and many other things in the electronic
structure of a crystal of a system. And this is often large and important particularly with Mn+3ions
and Cu+2 ions and with holes in alkali and silver halides.
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