
Solid State Physics
Lecture 6

Fourier Analysis of Diffraction

(Refer Slide Time: 00:24)

So, why do we go for Fourier Analysis or rather what allows us to go for Fourier analysis? We need
to so, a crystal is invariant under any translation of the form T is given as u1−→a1 + u2

−→a2 + u3
−→a3 . So,

every crystal subject to its axis vectors that is primitive translation vectors −→a1 , −→a2 and −→a3 is invariant
under this kind of a translation where u1, u2, u3 these are integers. We have discussed this earlier. We
have defined the lattice in terms of this, therefore, this is true. And when this is true then all physical
properties like charge density, magnetic moment any other physical property that we can consider
for a crystal must be invariant under this kind of a translation. There is no exception in that. There
cannot be any exception in that means; we have a periodic system, a perfect periodic system that is
ideal to be described using Fourier analysis. Therefore, first we consider an arbitrary function n(x)
in 1 dimension for simplicity. So, we want. So, n(x) is a periodic function and it has a periodicity
of a. So, we want to represent this function in a Fourier series comprising sine and cosine functions.
So, n(x) in a Fourier series can be written as n0 + Σp>0[Cp cos 2πpx

a
+ Sp sin 2πpx

a
]. Here we have

considered p to be positive integer, Cp and Sp are real. So, Cp and Sp these are called the Fourier
coefficients corresponding to this Fourier series and we have a factor of 2π

a
. So, this 2π

a
this factor

ensures the periodicity. Cosine and sine functions are periodic in with the period 2π. And if we put
2π
a

in the argument of cosine and sine functions the periodicity becomes that is the period becomes a.
Let us test it. (Refer Slide Time: 05:00)

So, if we calculate n(x) + a, what do we obtain? We obtain nothing but n0 + Σp[Cp cos(2πpx
a

+

2πp) + Sp sin(2πpx
a

+ 2πp)] this is what we obtained. So, cosine of twice so, this part will go away
if we consider the periodicity of cosine and sine functions because p is a positive integer, p is any
integer is fine. So, this becomes nothing but n0 + Σp[Cp cos 2πpx

a
+Sp sin 2πpx

a
] and this is nothing but

n(x). So, we have verified that this function n(x) the way we have constructed and represented it in
terms of a Fourier series is indeed periodic with the period a. Once we have that then after confirming
this we can say that (2πp

a
), this is a point in the reciprocal lattice of the Fourier space of the crystal.

That means, we are performing a Fourier transform on the real space to get another space and that
is a reciprocal space and in that reciprocal space 2πp

a
is a lattice point. It is a point of the reciprocal

lattice that is the idea. So, we have introduced the idea of reciprocal lattice in 1 dimension. Now,
these reciprocal lattice points suggest us the allowed terms in the Fourier series. So, we have written
a generic Fourier series here and depending on the periodicity of the crystal some of the terms would
be allowed and some of the terms forbidden and these lattice points suggest us the allowed terms. A
term is allowed only if it is consistent with the inherent periodicity of the crystal. Now, the Fourier
series may be written in a compact exponential form allowing for complex numbers. (Refer Slide
Time: 08:24)

We can write n(x) = Σpnp exp (i2πpx
a

). So, what have we done now? We have allowed p to be any
integer, be it positive, negative or 0 and now the coefficients np are no longer real numbers. The np
are in general complex numbers, but we have to ensure that n(x) remains to be a real function. How
do we do that? We would require for that n−p∗ = np. This will ensure that n(x) is a real function.
Let us verify this. Now, if we put for simplicity of writing 2πpx

a
, we put this as φ then from the

above we can write np. I am just expanding the exp iφ = (cosφ + i sinφ) + n−p(cosφ − i sinφ) =
(np + n−p) cosφ + i(np − n−p) sinφ. Now, this function becomes a real function that means, this
quantity goes to 0, provided this condition is satisfied, ok. After arguing this, let us take the next step
that is let us extend this analysis to 3 dimension. We have done this analysis in a simple 1 dimensional
fashion, now, let us extend it to 3 dimension. The extension is straightforward. (Refer Slide Time:
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12:16)

Instead of ex/a, we need to put. So, instead of nx we are putting nr that generic function that is ob-
tained by a Fourier transform that is Σ−→

G
. So, if a Fourier series Σ−→

G
n−→
G

exp (i
−→
G · −→r ) and this must

be invariant under all the allowed translations that is there in the crystal. So, whatever translation the
crystal allows this function should be invariant under that. Now, what if we invert this Fourier trans-
form? So, the coefficients np that can be written as a−1

∫
0

a
dx n(x) exp (−i2πpx

a
) in the 1 dimensional

case. I have just written it, I want to show it now. If we put the value of n(x) that we have written
earlier, n(x) was given as Σpnp exp (i2πpx

a
). Now, if we put this in the case of in the expression for

np that we have written it is a−1Σp′ because there would be repeated indices and to preserve the gen-
erality we need to introduce a prime here np′

∫
0

a
exp (i2π(p

′−p)x
a

). Now, if we have p′ 6= p then we can
see that this integral will go to 0. You can work out how this integral goes to 0, if p′ 6= p and if p′ = p
then the integrand becomes ei×0 that is 1. So, performing this integral we will get np′×a, that is what
we will get and so, everything becomes consistent with this. Σnp′ we would just get np from this. So,
only one value of p was allowed and therefore, we will get np = np and this expression that we have
written for np is valid, everything becomes consistent. (Refer Slide Time: 16:31)

And at this stage it becomes important to write down the inverse Fourier transform after knowing np’s.
So, the inverse coefficient n−→

G
that can be written as 1

Vc

∫
cell

dV n(−→r ) exp (−i
−→
G · −→r ), Vc is the cell

volume. Now, we have also we have also defined the inverse transform what we do not know in here
is what are these

−→
G . So, the

−→
G are called reciprocal lattice vectors. What do we mean by reciprocal

lattice vectors? So, we must define what it is. It is like the
−→
T that we defined in the case of real space

that is a linear combination of. So, with integer coefficients a linear combination of the axis vectors
in the real space and G would be with integer coefficients linear combination of the axis vectors in
the reciprocal space. So, we must define the axis vectors in the reciprocal space. We call it

−→
b1 ,
−→
b2 and−→

b3 .
−→
b1 ,
−→
b2 and

−→
b3 can be defined as; so,

−→
b1 ,
−→
b2 and

−→
b3 they must satisfy certain conditions. And I am

just telling the definition the way we can define them and exactly what conditions they must satisfy
and how this 1 is a possible choice we will discuss that later. So, the numerator will have a cyclic
order and the denominator is nothing but the scalar triple product that is the cell volume of the real
cell and

−→
b3 can be similarly written as 2π

−→a1×−→a2−→a1·(−→a2×−→a3) . So, with −→a1 , −→a2 and −→a3 being the primitive lattice

vectors for the real cell,
−→
b1 ,
−→
b2 and

−→
b3 are the primitive lattice vectors for the reciprocal cell and it will

hold a property
−→
bi · −→aj that becomes 2πδij . So, if i = j, δ = 1. If i 6= j, δ = 0 and this is something

you must verify. For this definition that this holds good and this is one of your home works. And later
on we will show you why we require this condition to hold and why this definition of

−→
b1 ,
−→
b2 and

−→
b3

could be an acceptable definition. That is all for now.
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