
Solid State Physics
Lecture 54

Phonon Density of States

(Refer Slide Time: 00:25)

How do we find out the density of states? Let us do it in 1 dimension for simplicity of course. Let
us consider a boundary value problem for vibration. We consider 1 dimensional line of (N + 1)
particles and it has a length L. So, it looks like this and the end atoms are fixed. So, this one is
fixed, this one is also fixed because we are interested in stationary modes. The lattice constant is
’a’ that is the separation between two such atoms. Here s = 0, here s = N, sorry that makes it (N
+ 1) atoms. And the displacement of this atom is marked as us. So, we suppose that the particles
at s = 0 and at s = N, this particle here and this particle here these two are fixed. Therefore, each
normal vibration mode of polarization p has the form of a standing wave where us is the displacement
of particles us is the displacement of particle ’s’. How do we express u s then? We have done
it earlier us = u(0) exp (−iωKpt) sin (sKa). So, ωKp this quantity is related to the wave vector
by the dispersion relation. Wave vector is K and the dispersion relation is something we did not
determine yet. The wave vector K is restricted by the fixed N boundary condition. So, we will have
the values of K allowed values of K = π

L
, 2π
L
, 3π
L
, ........, (N−1)π

L
And if we now solve for K = π

L
,

we will get us ∝ sin ( sπa
L

) from here. And it will vanish at s = 0 and s = N as we require from the
boundary condition. The solution for K = Nπ

L
that is the maximum value there we will have for

K = Nπ
L

= π
a

= Kmax, we will have us ∝ sin sπ. This permits no motion of any atom because
sin sπ vanishes at each atom. Therefore, there are (N - 1) allowed independent values of K as we have
written down here. This number is equal to the number of particles allowed to move. Each allowed
value of K is associated with a standing wave and for 1 dimensional line there is one mode for each
interval. (Refer Slide Time: 06:41)

Interval means ∆K = π
L

, this part is an interval and for each interval there is one phonon mode.
Therefore, the number of modes per unit range it is given as L

π
for K ≤ π

a
in this range. And if we go

beyond this that means, that will take us outside the first Brillouin zone, it will become 0 for K ≥ π
a

.
There is no point in going beyond the Brillouin zone that does not represent anything physical. There
are 3 polarizations; that means, there would be 3 different p indices for a 1 dimensional for each value
of K in 1-dimension, 2 of these would be transverse and 1 would be longitudinal. In 3 dimension the
polarization is not this simple, only for wave vectors in certain spatial crystal directions there would
be 3 normal modes and otherwise it could be complicated. Now, we need to find out the density
of states. D(ω) is our density of states, the number of modes per unit frequency range for a given
polarization that is the density of states that we are interested in. So, D1(ω)dω = L

π
dK
dω
dω, which is

L
π
dω
dω
dK

the dispersion the group velocity the dispersion this can be obtained from dispersion relation.

So, we can obtain the group velocity that is this quantity here dω
dK

from the dispersion relation and
there is a singularity if this quantity if the dispersion relation becomes horizontal. If ω(K) is flat if
the first order derivative goes to 0 then there is a singularity in the density of states ok. Now, we will
discuss the density of states in 3 dimension. (Refer Slide Time: 10:27)

We apply periodic boundary condition over N3 primitive cells. If we consider a cube with side ’L’
and with these this arrangement

−→
K can be determined using the condition exp [i(Kxx+Kyy +Kzz)].

This according to the periodic boundary condition would be exp [i(Kx(x+ l) +Ky(y + l) +Kz(z + l)].
If we have Kx = Ky = Kz = 0 or ± 2π

L
or± 4π

L
up to ± 2π

L
, this condition has to be satisfied. And so,

with K these values ofKx, Ky and KL these are the boundary conditions and from here we would find
that there is one allowed value of K per (2π

L
)3 of volume in K space. this shows us there is one allowed

value of K per (2π
L

)3 volume in the K space and this is for each polarization branch. If the volume
of our specimen is V = L3 because it is cubic the total number of modes with wave vector less than
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K equals ( L
2π

)3 times the volume of the sphere of radius K that can be given as N = ( L
2π

)3(4
3
πK3).

This is the total number of modes with wave vector less than K and this is for each polarization type.
(Refer Slide Time: 16:32)

Then the density of state for each polarization type becomes D(ω) = dN
dω

= V K2

2π2
dK
dω

. Now, we need
to find out Cv and the density of states is available with us, but we do not know the value of this. We
do not know the dispersion relation yet. So, we do not know how ω depends on K. So, we cannot
calculate this quantity yet and for that we take the help of Debye, where he developed a model for
density of states and that will help us find out this dispersion relation and then calculate the heat
capacity. So, let us focus on the Debye model for the density of states. In the Debye approximation,
the velocity of sound is taken as constant for each polarization type as it would be in the classical
continuum limit elastic continuum limit. So, the dispersion relation would be given as ω = vK, V is
a constant the velocity of sound is a constant in this case that is what Debye assumed. And if we put
this kind of an expression the density of states as we have calculated here in this expression would
become D(ω) = V ω2

2π2v3 . Just put the relation this relationship here and you will get this quantity. So,
this is the density of states that Debye model gives us. And if there are N primitive cells in the sample,
the total number of acoustic phonon modes would also be N as we have discussed earlier. Therefore,
we can put a cutoff frequency by integrating this equation we would be exhausted with the number
of acoustic phonons by that cut off frequency. We can write ωD, which is the Debye frequency or the
cutoff frequency; cubed of this ω3

D
6π2v3N

V
. This expression is obtained by integrating this one here.

If you integrate this density of states with respect to ω then you will get ω3/3 here that is what you
will get from here and 3 times 2 is 6 and this part the left hand side of this equation will give you the
number of acoustic phonons that is N. Therefore, ω3

D would have this kind of an expression. To this
frequency they corresponds a cutoff wave vector in K space. The corresponding cutoff wave vector
KD is according to this dispersion relation KD = ωD

v
, which is (6π2N

V
)(1/3). In the Debye model we

do not allow modes of wave vector longer than KD. Longer than KD is not allowed its cutoff there
the number of modes within K ≤ KD has to be considered and this exhaust the number of degrees of
freedom that is available with us that is that comes from the acoustic modes of phonon available with
us. (Refer Slide Time: 22:29)

So, the internal that is thermal energy is given by U =
∫
dωD(ω)〈n(ω)〉h̄ω. This would give us

the internal energy and the range of this integral would be from 0 to ωD because beyond that we do
not have phonons available, we are exhausted up to ωD. D(ω) the density of states V ω2

2π2v3 assuming
constant velocity of sound within a certain range of ω of course times ( h̄ω

eh̄ω/τ−1
), the Planck function.

This is the energy for each polarization type. For simplicity we assume that the phonon velocity is
independent of polarization and if we assume that we can multiply this expression by 3 to obtain the
internal energy. So, by multiplying with 3, we obtain U = 3V h̄

2π2v3

∫ ωD
0

dω ω3

eh̄ω/τ−1
. Now, we substitute

x = h̄ω
τ

= h̄ω
kBt

. If we do this we obtain U =
3V k4

BT
4

2π2v3h̄3

∫ xD
0

dx x3

ex−1
. xD the upper limit of the integral is

h̄ωD
kBT

which we write as θ
T

. Theta has the dimension of temperature. So, we call it Debye temperature.

This can be expressed as θ = h̄v
kB

(6pi2N
V

)1/3. (Refer Slide Time: 27:10)

So, the total phonon energy U can be written after doing all these mathematics asU = 9NkBT (T
θ
)1/3

∫ xD
0

x3

ex−1
,

where N is the number of atoms in the sample and xD = θ
T

as we have found out earlier. Now, comes
the heat capacity. We have found out the internal energy. So, the heat capacity is (∂U

∂T
)V = Cv =

3V h̄2

2π2v3kBT 2

∫ ωD
0

dω ω4eh̄ω/τ

(eh̄ω/τ−1)2 , which is = 9NkB(T
θ
)3
∫ xD

0
dx x4ex

(ex−1)2 . If we have T � θ the heat ca-
pacity approaches the classical value Cv = 3NkB. How about the opposite limit? At very low
temperature we may approximate U by letting the upper limit go to infinity. So, we do not restrict it at
xD, we make it infinity because that does not matter the temperature is very low. (Refer Slide Time:
30:43)
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So, we have
∫∞

0
dx x3

ex−1
=

∫∞
0
dx x3Σ∞s=1 exp (−sx). This quantity becomes 6Σ∞s=1

1
s4

which is π4

15
,

this is a standard sum. So, the internal energy can be approximately written as U ' 3π4NkBT
4

5θ3 for
very low temperature, T � θ. And if that is the case then Cv can be approximately written as
Cv = 12π4

5
NkB(T

θ
)3, which is by putting these values we can write 234NkB(T

θ
)3. So, the Cv goes as

T 3 if the temperature is pretty low. This is known as the Debye T 3 law. So, we have evaluated two
limits. In one limit temperature was much larger than the Debye temperature, where the Cv became
a constant and approach the classical value and when the temperature is very low the Cv goes as T 3.
For intermediate temperature we will have to explicitly evaluate this integral here to find out U and
then take the temperature derivative of U to find out Cv, which is a more difficult task, but that gives
a reasonable value of Cv that matches quite well with experiment. So, this is all about phonons that
we wanted to discuss.
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