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Analyzing the Dispersion Relation

(Refer Slide Time: 00:23)

Now, let us discuss about the first Brillouin zone; the behavior of phonon dispersion inside the first
Brillouin zone. We have already discussed that the range of K that is physically significant is within
the first Brillouin zone that is −π

a
→ π

a
, this is the significant range. And, if we take the ratio

of displacement of two successive planes that is if we take us+1

us
, if we calculate this quantity we

will find u exp [i(s+1)Ka]
u exp (isKa)

this is nothing but you can clearly see u exp [i(s+1)Ka]
u exp (isKa)

= exp (iKa). So, the
range −π → π covers all independent values of this quantity, of this exponential. The range of
independent values of K is specified by −π ≤ Ka ≤ π this is the range of independent K; that
means, −π

a
≤ K ≤ π

a
. This is the significant range and this is the first Brillouin zone for the linear

lattice. That is that means, the Brillouin zone for the lattice that we have is the same as the Brillouin
zone for the lattice vibration. (Refer Slide Time: 02:57)

Now, let us discuss the group velocity. You know that group velocity is the velocity at which energy
propagates in a wave and energy is one of the most important physical quantities that in every context
of physics we need to be we need to understand. So, the transmission of the transmission velocity
of a wave packet is the group velocity and the group velocity is given as dω

dK
. vg denotes the group

velocity, this is vg = dω
dK

. In three-dimension group velocity is given as the gradient in K-space of
ω(K). This is the velocity of energy propagation in the medium. (Refer Slide Time: 04:12)

With the dispersion relation that we found here, this dispersion relation or this dispersion rela-
tion the same thing actually the group velocity we have according to the dispersion relation ω =√

4C
M
| sin 1

2
Ka| absolute value of this because frequency cannot be negative. So, the group velocity

becomes vg =
√

Ca2

M
| cos 1

2
Ka|. Remember group velocity can have negative sign; there is no restric-

tion, although the frequency could not be negative. So, the group velocity is 0 at the zone boundary
where K = ±a, that you can readily see. The wave is a standing wave and we cannot expect any
net transmission because when the wave hits the zone boundary there is no group velocity; the group
velocity becomes 0. So, energy cannot flow out of it. So, the energy is confined within the Brillouin
zone that we can clearly see from our calculation and therefore, it has to be a standing wave. The
energy is not propagating beyond a Brillouin zone. That is something very important that we can
see from our calculations. Now, let us see the long wavelength limit. The long wavelength limit is
given as Ka � 1. If we have this limit working we can expand cosKa ' 1− 1

2
(Ka)2. We truncate

the series right here. We do not write the next terms because Ka � 1. And, if we have this then
the dispersion relation becomes ω2 = C

M
K2a2 that is all because it is 1 − cos(Ka). So, this is it. If

we have this the result that the frequency is directly proportional to the wave vector as we can see
here ω2 ∝ K2 in the long wavelength limit is equivalent to the statement that the velocity of sound
is independent of frequency within this limit. Why are we talking about velocity of sound? Velocity
of sound moves through a medium by making waves into the medium; that means, its it makes the
lattice vibrate and in the case of lattice vibrant vibration with long wavelength we can see that ω and
K these two are linear within this approximation being valid. And, therefore, we can say that the
velocity of sound is independent of the frequency of that sound in the long wavelength limit there-
fore, the velocity can be given as ω

K
. This is the velocity of sound. This is the phase velocity of any

wave and this remains a constant independent of frequency within a certain range of frequency that is
large wavelength low frequency limit. This is exactly the result obtained from the continuum theory
in elastic waves continuum theory of elastic waves. (Refer Slide Time: 09:07)

Now, let us find the force constant and see how it is let us see how the force constant is found from
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experiment. In metals the effective force may be quite long range and carried from iron to iron through
the conduction electron C. Interactions have been found between planes of atoms separated by as
many as 20 planes while in our assumption we have considered only the nearest plane interaction,
nothing beyond. The generation of the dispersion relation to if we consider p number of nearest
neighbor planes it is found from empirical observation to be ω2 = 2

M
Σp>0Cp(1−cos (pKa)). So, what

are we talking about? We are talking about more than nearest plane interaction, more than nearest
neighbor interaction and empirically this has been found to be the dispersion relation provided p is
the number that is index of the plane that we are considering here. Now, if we solve for the interplanar
force constantCp by multiplying both sides with cos (rKa), where r is an integer and then we integrate
over the range of dependent values of K we can do that by in the following way. We multiply it with
cos (rKa) and integrate over the range of K that is the first Brillouin zone. M

∫ π
a

−π
a
dKω2

K cos (rKa);

r is an integer. M
∫ π
a

−π
a
dKω2

K cos (rKa) = 2Σp>0Cp
∫ π
a

−π
a
dK(1 − cos (pKa) cos (rKa) this is what

we get. And, this is 2πCr
a

. The integral vanishes except for p = r. This integral vanishes if p 6= r.
So, the only term that survives is 2πCr

a
. This is the only term that survives. With this we can write

Cp = −Ma
2π

∫ π
a

−π
a
dKω2

K cos (rKa). So, this Cp gives us the force constant at range pa for a structure of
monoatomic basis. This is the situation valid for metals for nonmetals whatever we have considered
earlier that is nearest plane interaction is fine, for metals it is not fine. So, for metals this kind of a
form of the interaction constant the force constant is observed empirically.
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