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Now, we consider some important particular cases to understand exactly what this kind of problem
lead to. Let us consider the nearly free electron approximation and within that approximation let us
try to find out the band dispersion relation energy momentum dispersion relation. If we consider a
one dimensional momentum space, then the momentum axis may be represented like this. This is our
k-axis let us say this is zero momentum let us draw that with green this line corresponds to 0, this is
π
a

, on this side here this is −π
a

, then here it is 2π
a

, here it is −2π
a

, this is 3π
a

, this is 3π
a

and so on. So,
this is the momentum space that we have drawn and if we now want to represent the free electron
energy momentum dispersion, that would look somewhat like let me draw a bit steeper that would
look somewhat like on this side its a parabola that is what it will look like. Maybe this one represents
a better parabola. So, I will erase the first part which looked more like a straight line. So, if we have
this kind of a picture energy momentum dispersion relation for free electron, let us see what we will
get for nearly free electron system. Now if we consider k = ±π

a
; that means, this point or this point

here. Then the energy the corresponding energy would be represented as E0 = h̄2

2m
π2

a2
this is the free

electron energy here and here this is E0 the drawing is not perfect. So, these two energies look not to
be the same, but in principle they are the same the reason that they look to be different is the mistake
in drawing. Now if we consider k = ±3π

a
, then we will see that the energy equals thrice of sorry it

would be E = 9E0, 32 = 9E0 and it will go it will move on it will be. So, many energies that we can
calculate for different values of k. Now one interesting thing to mention is that the green vertical lines
that we have drawn here those are the boundaries of the Brillouin zone. If we consider small strength
of a periodic potential for this system then we can consider two elements in the basis. (Refer Slide
Time: 05:41)

The basis elements in that case may be represented as at k = ±π
a

, the basis elements that we
are interested in would be ψ1(x) which is a plane wave with k = π

a
. So, the wave function is

ψ1(x) = 1√
L

exp iπ
a
x and ψ2(x) = 1√

L
exp−iπ

a
x. So, this wave function is 1√

L
exp iπ

a
x. Now if we

diagonalize the crystal Hamiltonian and want to find out the energy eigen values, then we will get

something like this a secular determinant like this
∣∣∣∣E0 − E V1

V1 E0 − E

∣∣∣∣ = 0 This is the secular equation

that we will have where V1 is the potential at 2π
a

. This is the Fourier transform of the crystal potential
corresponding to the lowest reciprocal lattice wave number. Now we see that the two-fold degenerate
empty lattice states of energy E0 are now split. The corresponding energy eigen values would be
E = E0 ± |V1| absolute value. And the same reasoning holds for the other empty lattice degenerate
states at the point k = 0 and k = ±π

a
. So, if we now try to draw that here what would we draw? We

would draw it draw the new band somewhat like this and here it would be a bit higher. So, the next
place it is crossing is somewhere here, it will come here and then it will approach this place say here.
So, we can draw another band like this this kind of a band can be expected. So, we can understand
qualitatively in the nearly free electron approximation that the origin of the energy gaps of the one
dimensional crystal that we have come that we have calculated in the context of chronic penny model,
this comes due to the splitting of the twofold degeneracy of the empty lattice that is produced by
periodic potential. So, you can see that there is a little gap opened here. So, this is the kind of gap
that we discussed in the context of chronic penny model. We can also determine the analytically the
behaviour of the energy bands near the boundary of the first Brillouin zone. So, what we have calcu-
lated here is just these two points these two points we did not really calculate this part of the band I
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have just drawn it because intuitively you cannot imagine something else but let us calculate it. Let
us suppose that the wave number k is very near to the boundary, but not exactly at ±π

a
its somewhere

a bit away. (Refer Slide Time: 10:44)

So, the basis function that we have considered earlier that would change now. We will have ψ1(x) =
1√
L

exp (i(π
a
−∆k)x) and the energy corresponding energy of this plane wave E1 = h̄2

2m
(π
a
−∆k)2.

And the other basis functionψ2(x) = 1√
L

exp (i(−π
a
−∆k)x) and this has the energyE1 = h̄2

2m
(π
a

+ ∆k)2.

So, the secular equation would be obtained by the determinant
∣∣∣∣E1 − E V1

V ∗1 E2 − E

∣∣∣∣ =0. If we have this

then the eigenvalues that can be calculated E = 1
2
(E1 + E2 ±

√
(E1 + E2)2 + 4|V1|2). Now if we

insert in this expression the values of E1 and E2 that we have calculated here we will be able to write

E(∆k) = E0 + h̄2(∆k)2

2m
± 1

2

√
16E0

h̄2(∆k)2

2m
+ 4|V1|2 and this is given with E0 = h̄2

2m
π
a2

. (Refer Slide
Time: 15:06)

Now if we have ∆k small within this approximation we can expand this energy as a function of
E(∆k) = E0 + h̄2(∆k)2

2m
± |V1|[1 + 2E0

|V1|2
h̄2(∆k)2

2m
] + ....... if we ignore the other terms then we can

write the effective mass of an electron for the upper and lower energy bands as. If we consider m∗,
then 1

m∗ = 1
m

(1 ± 2E0

|V1| ). You are familiar with the term effective mass effective mass means if we
ignore the potential and consider that there are quasi-particles that are free with a mass m star, then
they can be subject to this potential weak potential that we have in place they can be considered free
particles with this mass the quasi particles with this mass they are moving in the crystal without in
the influence of any potentials. For weak potentials small potentials and for small values of ∆k we
can perform this kind of an analysis to arrive at this kind of an expression for the effective mass of
the system of the quasi particles in case of small energy gap. So, V1, 2V1 = energy gap, if this one
is |V1|E0, then the effective mass is also expected to be small ok. Now, let us see this picture. So,
you will see that this picture that we have drawn with black is consistent with what we have obtained
and if we now draw the next band, the next band would look somewhat like somewhat like this and
so, on will go on here in the first Brillouin zone. So, this can be put in the other Brillouin zones as
well, but repeating them in the first Brillouin zone gives you the entire picture of the band structure
with the gaps that you can clearly see here. If you put it in the other zones that is also fine there is no
problem in terms of physics, but this is customary. This is this way within the first Brillouin zone the
band structure is often plotted that captures every information from every other Brillouin zone. Now
if we consider semiconductors with small energy gaps, then we also find that the effective mass in
that semiconductor for electrons is small giving rise to very high mobility of the carriers.
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