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Tridiagonal Matrices and Continued Fraction

(Refer Slide Time: 00:23)

Now, if we work out the Hamiltonian matrix, we will find a tridiagonal matrix here because we are
considering only nearest neighbor hopping’s beyond nearest neighbor the hopping elements are 0;
that is what we are assuming. (Refer Slide Time: 00:45)

With tridiagonal matrix, it offers certain advantages, let us see what kind of advantages we have
towards our side with this tridiagonal matrix. A matrix whose non-vanishing elements occur only
on the principal diagonal and the next upper and lower ones is called the tridiagonal; called the
tridiagonal matrix. And the crystal Hamiltonian that we have here in this context can be written,
represented in terms of localized orbitals as the basis. So, we will have basis elements like |fn〉, these
are our basis elements which are nothing, but our local orbitals |φa(x − tn). So, if we have this kind
of basis elements, then the Hamiltonian operator can be expressed in terms of these basis elements as
H = E0Σn all the diagonal elements of the operator |fn〉〈fn|+γΣn[|fn〉〈fn+1|+|n+1〉〈fn|], this would
be the expression of the Hamiltonian operator in terms of this |fn〉 basis which are localized orbital
basis. Now, one-dimensional tight binding Hamiltonian with one orbital per site and only nearest
neighbor hopping is the simplest example that we can describe using a tridiagonal Hamiltonian and
let us represent this. So, the general form of this tridiagonal Hamiltonian is instead of E0 and γ, we
will write just generic representation Σnan|fn〉〈fn| + Σnbn[|fn〉〈fn+1| + |n+1〉〈fn|] with appropriate
values of the diagonal and off-diagonal matrix elements an and bn. We have the Hamiltonian operator
as a Hermitian operator, it must be Hermitian. If H is Hermitian, an must be real because the diagonal
elements have to be real of a Hermitian matrix. The off-diagonal elements can be complex in general,
but we can absorb the complex part of it in appropriate phase factor associated with the basis elements
and if we do that, we can make bn also real by absorbing the phase factor into the basis elements itself.
(Refer Slide Time: 05:28)

Now let us see how we can invert a tridiagonal matrix that is actually pretty easy, inversion of a
tridiagonal matrix. Inverting the tridiagonal matrix would give us the advantage of being able to
calculate various quantities quite easily. So, let us consider a tridiagonal matrix of the form M =
α0 β1 0 0 . . .
β1 α1 β2 0 . . .
0 β2 α2 β3 . . .
0 0 β3 α3 . . .
...

...
... . . . ...

. We are considering a big matrix of finite size. We have this kind of a

big matrix at hand. For simplicity, we consider the rank of the matrix to be finite, but arbitrarily
large. If we call the inverse of this matrix to be M−1, then we are primarily interested in finding the
explicit expression of the elements in here. Let us consider the first element (M−1)00. If we consider
how to find this element, then we can indicate the det(M) = D0 this and then, we write D1 is the
determinant suppressing the 1st row and column. Similarly, we can calculate D2, D3 and so on. So,
D0 = α0D1 − β2

1D2. So, ( 1
M

)
00

= D1

D0
. (Refer Slide Time: 09:11)

Similarly, with this expression, we can write ( 1
M

)
00

= 1
D0/D!

= 1
α0−β2

1
1

D1/D2

, you can see that it

becomes an iterative process and if we iterate like this, we can write an expression of iteration like
( 1
M

)
00

= 1

α0−
β21

α1−
β22
....

− β2
0

α−1−
β2−1
....

. So, we have written continued fraction expression for the elements

of the inverse matrix. Now, in this case, we have β0 = 0, then we obtain the previous equation
that we have discussed earlier. So, this method; using this method, we can obtain any of the diagonal
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elements of the inverse matrix, also there is a formalism to get the off-diagonal elements of the inverse
matrix, similar formalism. And this using this continued fraction expressions which does not go to
infinity because we are considering matrices of finite size, it will, it can be easily evaluated using a
computer, there is no problem with this. Now, let us consider the density of states. If we consider
a system described by a Hamiltonian, the Hamiltonian is H and let us say it has ψm, normalized
eigenfunctions corresponding to Em eigenvalue, then the total density of states can be defined as
D(E) = Σmδ(E − Em). Consider this definition, think about it carefully and you will be able to
reconcile its meaning with whatever we understand from our previous notion of density of states, this
is consistent with that. So, if we integrate the density of states, then we are going to get the number
of states. If we

∫ E2

E1
D(E)dE we get the number of states in this energy range. (Refer Slide Time:

14:03)

The density of states if we consider it projected onto any arbitrary state of interest, let us consider
|f0〉 to be the arbitrary state of interest. Usually, local orbitals happen to be our states of interest,
then we can project the density of state onto this orbital that means, we can get the local density of
states provided this |f0〉 is a local orbital. So, the density of state projected on any arbitrary state of
interest, if we normalize it to unity, we can define it as n0(E) = Σm|〈f0|ψm〉|2δ(E − Em) provided
ψm is normalized, f0 is the arbitrary basis elements so, this is also arbitrary state of interest, this is also
normalize so, this quantity inner product squared would be a fraction less than 1 usually and this gives
us something less than the density of states that is also a function of energy. So the projected or local
density of states gives information uniquely on the spectral region investigated by the orbital f0; that
means, if we want to find out the contribution at a particular energy of certain orbitals, contribution of
that orbital into the density of state, we can perform this projection and see what is the contribution
coming from that particular orbital in the density of states at that particular energy and a spectrum
can be plotted varying the energy that is the idea. And if we

∫
n0(E)dE = 1 just because |f0〉 naught

is normalized. The total density of states is just the sum of the projected density of state over the
complete orthonormal basis set. So, if we consider the entire orthonormal basis set |fn〉 and project
the density of state onto each elements and sum them for a particular energy, then we will get the total
density of states.
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