Solid State Physics
Lecture 40
The Tight-Binding Approximation

(Refer Slide Time: 00:30)

Hello. We are going to discuss the Tight-Binding Method now. The tight-binding method is es-
sentially the linear combination of atomic orbitals in within periodic boundary condition, in case of
solids. Since, it is the linear combination of atomic orbitals for solids, we must have the Bloch condi-
tion satisfied. Otherwise, it is very similar to what we have done for a linear chain of hydrogen atoms.
So, here also in the context of tight-binding method, we are going to first analyze what happens in
one-dimension, and then we will discuss something about more like two or three-dimensions. So,
if we consider this formalism the tight-binding formalism, we can imagine construction of a crystal
from a hypothetical periodic one-dimensional sequence of n atoms that are equivalent, like hydrogen
atoms. So, we can draw the atoms like this and so on. Let us say this atom is at position 0, and this is
the potential axis, this is the x axis, the position axis. The potential would look somewhat like, at the
atomic site the potential goes sharply down and in between the potential is up. So, the potential looks
somewhat like this, and this is repeated because we are considering an infinite solid, with we are treat-
ing that with periodic boundary condition. And if we say that the electron under consideration has
this much energy which we call E,,, it has this much energy. This site we call ¢y, this is 1, {9, t3, {4 and
so on. In this direction, itis ¢t_1,%_5,%_3 and so on. For each atom we focus our attention on a given
local orbital let us say the local orbital is denoted as phi, and the corresponding energy is £, which
is less than the barrier height as we have drawn here. And phi, is similar to the s orbitals in case of
hydrogen atom chain that we have considered, but this in this generic picture we call it phi,. Now,
it is convenient to represent the crystal Hamiltonian, in the basis of these localized functions. So, the
basis set can be given as phi,. We write its argument as the, its the position argument phi,(x — t,,).
If we have the n'" site, then when = = t,, the argument would be 0. So, the that represents the orbital
corresponding to that particular site. And we form a set of such orbitals such states for varying n, that
gives us a basis step state for expanding the electronic state single particle state for this solid under
consideration. We need not be very specific about the Hamiltonian at this stage, but we need to use
the translational symmetry of the lattice, in order to be able to get something useful, understand the
useful properties of the wave function and the eigen states. So, here we define the onsite and the
hopping terms of the Hamiltonian. We first defined the onsite terms (¢, (z —t,,)| H|¢o(x —t,,)) = Eo,
and (¢, (x —t,)|H|¢q(x —t,+1)) = . This kind of states that should represent hopping to the nearest
neighbor, we call it 7. And the rest are 0, if it is =2, £3 and so on, then we consider no hopping
there. So, no hopping beyond nearest neighbors. This is something we assume. Now, for simplicity
due to the localized nature of the atomic orbitals, the hopping integrals involved for second and third
and subsequent neighbors we have treated them, we have considered them as 0. So, the value of the
interaction energy -, this has to be negative, in order to form a solid form a crystal, otherwise it will
disintegrate. (Refer Slide Time: 09:32)

So, the localized functions ¢,, they do not satisfy the Bloch theorem because they do not satisfy the
Bloch theorem and we need a single particle state of the electron in this solid to satisfy the Bloch
theorem, we have to construct the single particle state like capital ®(k, z). It can be represented as
the normalization constant j—ﬁEneikt" ¢q(x —t,). If we construct the single particle state in the solid,
this way, if we expand it this way then what happens? Where n is the number of unit cells in the
crystal, the this we can show that this satisfies the Bloch theorem, the Bloch condition, therefore, this
can be called the Bloch sum. How does it satisfy the Bloch condition? Let us check that. If we try to
evaluate this quantity ®(k, x + t¢,,) let us say because we want a different index not the same index
everywhere. If we want to calculate this, where ¢,,, is m times the lattice constant, this would be equal

to ®(k,x + t,) = \/LNEneikt”%(x + tpn — tn). Just from this definition here, we can write it this

Solid State Physics | Page 1 of 2



way. And this quantity can be expressed as e?*tm \/LﬁEneik(t”*tm)an(x — t, + t,n). This quantity here
is nothing but capital ®(k, x), according to this definition. In place of ¢, we have put t,, — ¢,,. So,
that does not change anything essentially; that means, we obtained that this quantity is equal to the
Bloch sum of with argument (k, z + t,,), the capital ®(k,z + t,,) = e®*®(k, ). This is the Bloch
condition. So, this kind of construction satisfies the Bloch condition, therefore, this sum is a Bloch
sum we have established that. Now, for simplicity we assume orthonormality of the orbitals centered
on different atoms. If n is different, then these orbitals are orthonormal that is what we assume. If
that happens then the Bloch sum is also orthonormal. So, the N, capital N number of itinerant Bloch
itinerant, Bloch sums, that can span the Hilbert space just like the localized function ¢ is. But the
Bloch sums for different k values, they cannot mix under the influence of a periodic potential. (Refer
Slide Time: 14:40)

With these understanding the energy dispersion of the band originating from the atomic orbitals. Let
us say we consider the atomic orbitals ¢, (z —t,,), set of these for different values of n, the energy dis-
persion of the bands originating from these atomic orbitals can be given as F'(k) = (®(k, x)|H|®(k, x)).
So, this is the onsite kind of matrix elements. And in the particular case of the matrix element of the
Hamiltonian between atomic orbitals, we know that this is for the same kind of orbital it is £y and for
different kind of orbitals that is nearest neighbor it is . So, just like we have derived it earlier in the
context of linear chain of hydrogen atoms, we can find the energy dispersion relation here, exactly
that &/ = Ej + 2+ cos ka. Now, this expression clearly shows us that the most elementary level that
the enfold degenerate states of the non-interacting atoms are smeared, and they lead to a bandwidth
of 2, sorry 4+, 2 here and for cosine value being +1 its 2+, being —1 its —2v. So, the bandwidth
would be 4+, 4|7y|. Now, we can expand the cosine in terms of powers of k. If we have small k, we
can retain up to second order term not beyond that, and we can then write E(k) = Ey + 2y — va?k?,
this way. The quadratic term that is this term here can be written in the form Zi’f . It is similar to the
free electron case, while m™ is the effective mass; that means, we are considering electrons as quasi
particles with certain effective mass that represents the free electron like picture ignoring the potential
that it is subjected to. So, m™* can be given as 22% The effective mass is small if the hopping param-
eter gamma is large, and if the hopping parameter is small, then the effective mass is large which is
obvious. If the mass is, if the quasi particle is very heavy it cannot hop easily, if it is light it can easily

hop. That is all it says.
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