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Transfer Matrix for a Rectangular Barrier

(Refer Slide Time: 00:24)

Now, let us consider a simple situation. We will calculate the Transfer Matrix for a Rectangular
Barrier and a Piecewise Potential. (Refer Slide Time: 00:36)

Why do we consider this kind of a potential a rectangular barrier? Because we know how to solve for
a rectangular barrier. So, let us first have some more insight into the transfer matrix and the tunneling
problem, using a known potential, then we will go for the periodic potential that we have in a solid.
So, we will discuss and apply the concepts that we have discussed so far, in case of a rectangular
barrier. What kind of a rectangular barrier do we consider? The potential is 0 at the left it is V0 within
this barrier region and 0 at the right again. We have AL amplitude coming from the left, AR moving
to the right amplitude and BL amplitude moving to the left, in the left side BR moving to the left, in
the right side. V0 is the potential here and if we consider this to be 0, this is the V(x) axis the potential
axis this is 0 here, this coordinate is ’b’. And, if we name this part as left part, this is the intermediate
part I and this is the right part R. If, we name it this way, then in the whole x-axis we can distinguish
3 different regions L, I and R. The general solution of the Schrodinger equation, that can be given in
the left side region ψL(x) = ALe

iqx + BLe
−iqx. This is an oscillatory solution, if we consider that

the electron energy E < V0, even then this is the left side. So, here the potential is 0. If, it is if the
energy is positive and E < V0 here it would be an oscillatory solution for the region x < b. So, this
is ’L’ region. If, we now consider the intermediate region ψI(x) = AIe

βx, which is not an oscillatory
solution provided V0 > E the energy of the electron ψI(x) = AIe

βx + BIe
−βx, this is for the region

0 < x < b, sorry the first region was x < 0. So, this is the intermediate ’I’ region and the last region,
the right side region,ψR(x) = ARe

iqx + BRe
−iqx, once again an oscillatory solution for the region

x > b which is ’R’ region. We have this function q which is the function of the electron energy is

given as q(E) =
√

2mE
h̄2 . And, we have the other quantity β again a function of the electron energy is

given as β(E) =
√

2m(V0−E)

h̄2 . The standard boundary conditions of continuity of the wave function
and it is derivative. We will have to have the wave function and it is first order derivative continuous
at x = 0. If we consider that we will also need it to be continuous at x = b. (Refer Slide Time: 06:48)

So, we will have from the boundary conditions; AL + BL = AI + BI at x = 0. From the first
order derivative at x = 0 we can write ALiq − BLiq = AIβ − BIβ, this is also from x = 0. We
can express AI and BI in terms of AL and BL, how do we do that? We can write a matrix equation(
AI
BI

)
= 1

2β

(
(iq + β) (−iq + β)
(−iq + β) (iq + β)

) (
AL
BL

)
. Similarly, if we consider the boundary condition at

x = b, we can obtain that
(
AR
BR

)
= 1

2iq

(
(iq + β)e(−iq+β)b (−iq + β)e(−iq−β)b

(−iq + β)e(iq+β)b (iq + β)e(−iq−β)b

) (
AI
BI

)
. This is

what the boundary condition gives us and once we have this the direct multiplication of the transfer
matrix matrices, gives the transfer matrix for the rectangular barrier in the question. (Refer Slide
Time: 10:51)

So, if we do that we get s11 = e−iqb[cosh βb + i q
2−β2

2qβ
sinh βb]; s12 = e−iqb(−i) q2+β2

2qβ
sinh βb. And,

we have s22 = s∗11. So, we can find s22 this way and s21 = s∗12. So, we can obtain s21 also this
way. So, what did we do? We have multiplied these two transfer matrices here; one is this, the other
one is this, to get these matrix elements for the full transfer matrix corresponding to this rectangular
potential barrier, this is what we have done. Now, if we consider the barriers shifted by ’d’ appropriate
phase factor has to be introduced in the transfer matrix. The transfer matrix of an arbitrary piecewise
potential can be obtained by multiplying the component matrices in appropriate order. Now, if we
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consider |s11|2 = 1 + q2+β2

24q2β2 sinh2 βb]
. And, the transmission coefficient of the barrier, that is given as

capital T (E) = 1|s11|2, which is nothing but T (E) = 1

1+
V0

24E(V0−E) sinh2

√
2m(V0−E)b2

h̄2

. By putting the

value of every term that we have for 0 ≤ E ≤ V0, in this range of energy, this is the transmission
coefficient. And, now if we have the energy of the electron that is E > V0; that means, the energy of
the electron is more than the barrier that we have considered here. (Refer Slide Time: 15:24)

In that kind of a situation for E > V0 we can similarly calculate the transmission coefficient, we will
get it to be T (E) = 1

1+
V0

24E(E−V0) sin2

√
2m(E−V0)b2

h̄2

, this is for E > V0. If, we have E = V0. In this kind

of a situation, we will have the transmission coefficient which is the function of energy, which is now
T (V0) = 1

1+ 1
4
β2

0b
2 . Let us put the write h̄2β2

0

2m
= V0. This is the expression for the potential barrier

when E = V0 and this would be the transmission coefficient why?. Because, E − V0 this quantity
here is going to 0 and sin2 0 = 0. Similarly, from this one we can find that this quantity is going to 0.
So, this term is not going to contribute and we will get just this part.
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