
Solid State Physics
Lecture 36

Tunneling of Electrons

(Refer Slide Time: 00:30)

Hello. Now, we shall discuss Tunneling of Electrons. As we have discussed, in the context of covalent
bonds, and in the context of linear chain of hydrogen atoms, that electrons interact, that is hopped from
one atom to another, and that hopping is a tunneling method. It cannot, it does not really have enough
energy to overcome that potential barrier. Nevertheless, in quantum mechanics it can tunnel from
one atom to another. And that kind of tunneling happens in almost every solid. This is not transport.
This is just hopping, that electron may come back, but this process is not very fast. And not many
electrons tunnel at the same time, it is very few that does it. So, it is not transport, it is something else.
So, transmission and reflection of electron has to be considered that to through an arbitrary potential
barrier. And in this context, we will use the transfer matrix method to understand exactly what goes
on in the tunneling process. So, here we consider the propagation of electron in one-dimensional
crystal from one point to another. So, we can find out, we can determine the reflected and transmitted
components of a wave that is electronic wave that hits a given potential. Let us consider an arbitrary
profile of a potential barrier. Let us consider that we have potential axis here V (x), and this is the x
axis in one-dimension. And let us say this is the potential profile, on the left side it is xL, on the right
side it is xR, this is an arbitrary potential profile. And we consider that there is an amplitude AL of the
wave approaching the barrier from the left. So, this is this electron is moving right, AR, that is also
moving right, but this is on the right side of the potential, and BL wave moving towards the left, at the
left side of the barrier, and BR wave moving towards the left at the right side of the barrier. Let us say
we have this kind of an arrangement. And outside this region xL to xR that is this part and so right part
and left part, for the simplicity we consider that the potential is 0 in these regions. If we consider this,
then the general solution to the Schrodinger equation for a positive energy E, let us say the energy e
is somewhere here, anywhere, but that is less than the barrier. If we have that kind of a situation, then
we can write the left side left hand side part of the wave function ψL(x) = ALe

iqx +BLe
−iqx moving

along the positive x direction +BLe
−iqx moving along the negative x direction that is left towards the

left. This is for x ≤ xL. And for the right hand side, ψR(x) = ARe
iqx + BRe

−iqxthat is moving
towards the right +BRe

−iqx that is moving towards the left. And this is for the region x ≥ xR. Now,
we have this q here in the exponential part. The q as we have learned from the potential barriers,
the understanding of potential barriers, this is a function of the energy of the electrons, and this is
given as q(E) = 2mE

h̄2 . This is in the left and in the right side of the barrier. Now, let us consider the
Schrodinger equation. Since, the Schrodinger equation is a linear second order differential equation,
the amplitudes AR and BR on the right hand side of the right hand lead if we consider this part to be a
lead, depends linearly from the amplitudes AL and BL that is also left hand side. (Refer Slide Time:
07:24)

So, we can represent the case of the barrier using a transfer matrix like
(
AR

BR

)
= S(E)

(
AL

BL

)
So,

the transfer matrix will be a 2 by 2 matrix, which can be written as
(
s11(E) s12(E)
s21(E) s22(E)

) (
AL

BL

)
. So,

this is our transfer matrix. And this is the same as S(E) here. So, if we now perform this matrix
multiplication, we can write in terms of these matrix elements the linear equations AR = s11AL +
s12BL. Similarly, BR = s21AL + s22BL. Just the matrix multiplication gives us this linear, set of
linear equations, and the transfer matrix S(E) corresponds to a given potential V(x), that we have
drawn here, and of an arbitrary shape and the chosen energy E of the electron. So, this can be
obtained by integrating the Schrodinger equation. Notice that the complex conjugate of any solution
of Schrodinger equation is on its own write a solution for the same energy. Therefore, we can write
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s11 = s∗22 that has to be true and s12 = s∗21 that has to be correct, in order to be us, in order to have
a solution to the Schrodinger equation. Now, we can also show that the determinant of this matrix
transfer matrix is 1, which means the matrix is unimodular. (Refer Slide Time: 11:22)

So, if we consider the physical meaning of the amplitudes of the left hand side and the right hand
side waves, and if we consider the electronic current density. Then, we can write, considering the
electronic current density and the and its correspondence with the amplitudes, we can write |AL|2 −
|BL|2 = |AR|2−|BR|2. So, now by considering this form of the transfer matrix, and these constraints
on the transfer matrix elements, we can write |AL|2− |BL|2 = |s11AL+ s12BL|2− |s21AL+ s22BL|2,
which is equal to [|s11|2 − |s21|2][|AL|2 − |BL|2] . So, now we can write from this that |s11|2 − |s21|2,
which if we look at the form of this transfer matrix, we can find that this is nothing but the determinant
of the transfer matrix, subject to these constraints and this must be det(S) = 1. So, we have found that
the transfer matrix between two leads that is the left hand side lead and the right hand side lead,
connecting the barrier is unimodular because this quantity, according to this calculation here s 11
square, |s11|2 + |s21|2 = 1 which is same as the determinant of this transfer matrix. We have proved
S to be unimodular.
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