
Solid State Physics
Lecture 34

The Bloch Theorem in one Dimensional Periodicity

Hello. So far we have been discussing about free electrons, but most of the electrons in solid cannot
be absolutely free. They are at least subjected to a weak periodic potential; the potential having the
periodicity same as the periodicity of the lattice. So, let us try to understand what is the minimum that
we can understand about the electronic states subject to a periodic potential. So, let us start with one
dimensional such case, so that our mathematics and our understanding becomes easier and then we
will move on to more complicated situations. So, let us start discussing a one dimensional periodic
potential and electron under the influence of that kind of a potential. (Refer Slide Time: 01:23)

So, if we consider an electron in a one dimensional potential and if we express that potential as V (x),
then the corresponding Schrodinger equation would be − h̄2

2m
d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x), ψ(x) is a
wave function of the electron and it is a function of x. Now, the solution for Schrodinger equation is
known for free electrons for which the potential is always V (x) = 0, harmonic oscillators for which
the potential is given as V (x) = 1

2
kx2 and uniform electric field for which the potential is expressed

as V (x) = e
−→
Ex. This is not the energy, this is the electric field E here. So, the, for these kind of

systems the solution to the Schrodinger equation is known. But, here we have certainly a potential
of different kind. We have a periodic potential it is not very strong, but it has the periodicity of the
lattice, we do not know exactly what the potential is. The potential would be different for different
kind of systems, but the exact potential we are not interested in at this stage. We are interested in
what we can qualitatively understand even without knowing the exact form the form of the potential,
but knowing the fact that the potential is periodic in the periodicity of the lattice. So, V (x) in this
context is a periodic potential, and if we have a crystal with lattice constant ’a’ then the potential is
also periodic in a; that means we can write V (x) = V (x + ma). What is m? m is any arbitrary
integer. This kind of a periodicity is there in the potential. So, the Fourier transform of a periodic
potential V (x), that can include only plane waves, and the wave number for the Fourier expansion
can be given as hn = n2π

a
. (Refer Slide Time: 06:21)

Now, if we express this potential V (x) in terms of a Fourier series, we can write V (x) as Σ∞n=−∞Vne
ihnx.

And, in general if we have V (x) not to be periodic, we can still have a continuum we can still have
a we can have a continuous Fourier transform, but when V (x) is periodic, it is a discrete Fourier
transform with discrete Fourier coefficients, otherwise we will have a continuous Fourier coefficients
that can be expressed in terms of integrals. Anyway, so if we start with no potential; that means, free
electron kind of a system if we start with this V (x) = 0, then the wave functions in the Fourier expan-
sion Wk(x), these are just plane waves normalized to arbitrary length of the lattice Wk(x) = 1√

L
eikx.

The normalization condition has been chosen so that this wave function Wk(x) is normalized within
the lattice, within the interval 0 < x < L. Now, the wave number k, these are real and the energy
eigenvalues are given as E = h̄2k2

2m
that we have learned so far. The plane waves make a complete set

of orthonormal function that can be used for expansion of any wave function. So it can be used as a
basis set. Now, let us consider the eigenvalue problem when the potential is periodic, but not 0. So,
we have a periodic potential can that can be expressed in Fourier series as V (x) = Σ∞n=−∞Vne

ihnx.
We have let us say this kind of a periodic potential at hand. And, now if we consider the Hamiltonian
operator as = p2

2m
+ V (x), if we apply this operator to the plane wave, then what do we get? (Refer

Slide Time: 10:25)

H|Wk(x)〉, this quantity belongs to let us say a subspace Sk. what kind of a subspace is that? This sub-
space is a subspace of plane waves, they have wave numbers k+hn, we have the definition of hnin such
a way that this subspace can be given as the set of Sk = Wk(x),Wk+h1(x),Wk−h1(x),Wk+h2(x),Wk−h2(x)and
so on. So, please go through this idea of subspace and how, what we are doing here a few times so
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that you understand it properly. Now, we can see that the subspace Sk that we have chosen here it is
closed under the application of the Hamiltonian operator. That means, if we apply the Hamiltonian on
one of the, its elements, we will get another element within this set. We will get whatever element that
is within this set. We will not get it outside this set. So, diagonalization of the Hamiltonian operator
within the given subspace Sk provides rigorous eigenfunctions of the Hamiltonian operator and we
can level the eigenfunctions of the Hamiltonian operator as ψk(x). So, now if we consider another
wave number k’, the corresponding subspace would be Sk′ . Sk′ is different from Sk, it is not related
to Sk, it is it will have completely different elements, provided Sk and Sk′ these are not related by
integer multiples of 2π

a
. So, Sk and Sk′ are different if k′ 6= n2π

a
± k. If this condition holds then these

two subspaces are different. Now, on the contrary, if we consider that k is if instead of not equals
to if we put equal sign here; that means, if we consider k = k′ + n2π

a
, this implies that Sk and Sk′

they coincide. You can easily see by inspecting the elements in this set. Now this allows, this fact
that they coincide allows us to define a fundamental region in the k-space, which is −π

a
< k ≤ π

a
.

This is the fundamental region, if you go beyond this you will just repeat the properties that are found
in this region. You will not get anything new outside this region; therefore, this is the fundamental
region. And, this region includes all the different k levels giving independent Sk subspaces. So, this
fundamental region is as you can see of length 2π

a
and this is called the first Brillouin zone or the

Brillouin zone. (Refer Slide Time: 16:56)

If we consider a generic wave function, ψk(x) that is obtained by diagonalization of the Hamiltonian
in the subspace Sk, so this wave function can be expressed as an appropriate linear combination of
the plane waves. So, what kind of plane waves, what kind of linear combination can express a generic
wave function in this subspace? ΣnCn(k), these are the coefficients of the plane waves then the
normalization constant 1√

L
ei(k+hn)x. This is the expansion for any generic wave function ψk(x). Now,

it is convenient to write introduce a new function uk(x) which gives us ΣnCn(k) 1√
L
eihnx. So, this k

part is not included in uk, this one. uk(x) this hn part is taken here which is nothing but can be written
in a bit different form ΣnCn(k) 1√

L
ein

2π
a
x, putting the form of hn here. So, it is clear that this function

uk(x) is a function with the same periodicity of the potential. You can see that from here, if x = a
or integer multiple of a, it will show you clearly what the value becomes, it will go back to the same
value. So, it is a periodic function with the same periodicity of the potential that is of the lattice. Now,
if we have defined this quantity then we can write this generic wave function of that electron under
the influence of a periodic potential as ψk(x) = eikxuk(x) kind of a form we can derive out of these
analysis. Now, uk(x), if we take uk(x + a) = uk(x) because uk is periodic in a. So, this expression
here is called the Bloch theorem. This holds for the wave function of an electron subject to periodic
potential. So, what is the statement? We can see that the generic wave function of an electron subject
to a periodic potential can be expressed as an exponential function eikx multiplied by a function that
is periodic in the lattice. It has the same periodicity of the lattice. Let us express the Bloch theorem
in words, because it is very important. (Refer Slide Time: 21:34)

Let us write it down. Soon we will see how powerful this theorem is. Any physically acceptable
solution of the Schrodinger equation in a periodic potential takes the form of a traveling plane wave
modulated on the microscopic scale by an appropriate function with the lattice periodicity. So, what
is the traveling plane wave? It is the eikx, that part that is the traveling plane wave and uk(x) is
the appropriate function with the lattice periodicity. This is the Bloch theorem. We can also state
it in an alternative form. We can write that ψk(x + tn) = eiktnψk(x), where tn = nawhere that is
any translation in the direct lattice. So, the Bloch theorem guarantees the itinerant form of a wave
function.
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