
Solid State Physics
Lecture 32

One Dimensional Chain of Atoms

Hello, we are going to discuss the Electronic Structure; that means, what kind of electronic states
materials have, why they have that kind of state and what does it mean? How we can calculate the
electronic states and the energy corresponding to that all these things, we are going to discuss now.
So, in order to discuss the electronic structure, we have to start from something very simple. And, in
order to start from something very simple, we have already discussed the case of hydrogen molecule
and now we will consider a 1 dimensional linear chain of many hydrogen atoms. That is the next
extension to the hydrogen molecule consideration that we have discussed in the context of covalent
bonds. So, let us consider a one dimensional chain of N hydrogen atoms. (Refer Slide Time: 01:27)

We can draw the chain like this. So, this is one hydrogen atom, this is second, third, fourth. Similarly,
this is (N - 2), (N - 1), N th hydrogen atom. If we have total N number of hydrogen atoms in the
system; 1 2 3 4, (N - 2), (N - 1), N and here I draw the bonds between them. So, this kind of a
chain is something that we are going to consider now. Now, each hydrogen atom is associated with
an electronic s state. So, we assume that these states the atomic s states. They form a complete
basis to represent the molecular single particle state of this system of hydrogen atoms N number
of hydrogen atoms arranged on a straight line. So, if we consider the state of this entire system
represented as |ψ〉. Then, we can expand |ψ〉 in terms of the linear in terms of a linear combination
of the basis elements as |ψ〉 = ΣN

j=1Cj|j〉. So, j is the this quantity this ket vector |j〉 is the s state of
jth atom. Now, our task is to find the coefficients Cj , if we can find these coefficients, then we will
be able to find out the state and the energy eigenvalue corresponding to the state |ψ〉. So, we need to
write the Schrodinger equation, which is in it is time independent form just an eigenvalue equation
H|ψ〉 = E|ψ〉. And, this in terms of the linear combination of |ψ〉 can be represented as ΣN

j=1CjH|j〉
Hamiltonian acting on the state |j〉. So, this Hamiltonian is the Hamiltonian of this system chain of
hydrogen atoms and this ket vector |j〉, this corresponds to the atomic orbital. So, not necessarily
|j〉 is an eigen state of the Hamiltonian. This quantity according to this eigenvalue equation becomes
ΣN
j=1CjH|j〉 = EΣN

j=1Cj|j〉 . This is the eigenvalue equation that we can write. Now, in the next
step we are going to multiply a bra vector from the left, let us call it 〈p|. And, if we multiply this;
that means, we are projecting these states on the state from the pth site. And, this equation can this
eigenvalue equation can be represented by doing this as ΣN

j=1Cj 〈p|H|j〉 = E ΣN
j=1Cj〈p|j〉 inner

product of 〈p| and |j〉. So, this is the secular equation for the chain of N atoms. Now, this requires a
few approximations and denoting the terms in some in certain way to be able to progress further. So,
in order to be able to solve this, we assign the Hamiltonian terms, Hamiltonian matrix elements. That
means, these kind of terms and the overlap terms that is these inner products in certain way. (Refer
Slide Time: 08:26)

How do we do that? The simplest assumption would be orthonormality; that means we assume 〈p|
and |j〉, their inner product to be 〈p|j〉 = δpj; that means, when p = j, this inner product 〈p|j〉 = 1
when p 6= j then this inner product 〈p|j〉 = 0, which is just the orthonormal condition, orthonormality
condition. We have also assumed this orthonormality condition for the hydrogen molecule case, we
can work out the problem without assuming this, but then the mathematics would be cumbersome for
very little gain. That is the reason we are considering this to be orthonormal. So, this is about the
overlap elements. How about the matrix elements of the Hamiltonian? For the matrix elements of the
Hamiltonian we consider the following. If we have the Hamiltonian matrix, the Hamiltonian operator
sandwiched between 2 same states, then we call for all values of j, 〈j|H|j〉 = α this kind of matrix
element as alpha which is the onsite term. Not that for every system this is this must happen, but for
linear chain of hydrogen atom it is going to happen and this is something we consider for simplicity.
And, for all values of j α is the same constant that is what we assume. Then, how about the matrix
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element being sandwiched between sorry the Hamiltonian operator being sandwiched between two
different states? If, we have 〈p|H|j〉 = β this kind of a situation, then we call it β on which is a
hopping term rather hopping element, this is the onsite element. So, the hopping element if p and j
are nearest neighbors so, we are going to restrict the hopping between two nearest neighbors. And,
if they are not nearest neighbors p and j are not nearest neighbors, then this kind of hopping term is
〈p|H|j〉 = 0, this is something we assume for simplicity ok. Now, we can determine α and β by
evaluating the integrals or by fitting with experimental data, but for this particular problem there is
no experimental data for a chain of N hydrogen atoms. So, let us consider the theoretical aspects of
it. As we have learned that linear combination of atomic orbital’s the method that we are practicing
here, it is not very accurate. But, we obtain a lot of physical insight into the problem by exercising
this kind of a method that is the reason we are going to do this. So, we are not very much interested
in the accuracy of α and the values of the α and β parameters here. But, we are interested in the fact
that these parameters may be in principle determined and what kind of understanding we can develop
from this kind of an approach ok. Now, if we consider different values of p, we can find different
forms of this secular equation this equation here. (Refer Slide Time: 13:04)

And, if we write that down, it will look like I go to a next page for different values of p we can so, that
equation becomes for p = 1 it is, αC1 + βC2 = EC1, for p = 2 we have βC1 + αC2 + βC3 = EC2.
Subsequently for p = 3, we can write βC2 + αC3 + βC4 = EC3. Similarly, we can go up to jth term
there we can write βCj−1 + αCj + βCj+1 = ECj this is for p = j. We can move forward just like
that for p = (N - 1) we can write βCN−1 + αCN = ECN , this is for p = (N - 1) and for p = N we will
have for the end atom βCN−1 + αCN = ECj this is for p equals N. So, these are the equations that
we have the series of secular equations for this system of linear chain of hydrogen atoms, N number
of hydrogen atoms ok. So, these are N number of coupled differential equations. And, we need to
solve them to obtain the values of the coefficients Cj those values. Now, if we put if we substitute the
quantity E−α

β
= x, then the jth equation, this equation here can be written as Cj−1−xCj +Cj+1 = 0.

this is what we obtain. And, if we use a trial solution for Cj in this case, if we try Cj having the form
eijθ, where i =

√
−1 and θ is to be determined. If, we try this kind of a solution to this differential

equation here, the set of coupled differential equations, sorry it is not differential equation, it is just
coupled linear equations; there is no differential form in here. So, if we put this kind of a trial solution
to this coupled linear equation here, these coupled linear equation, which is taking this kind of a form.
(Refer Slide Time: 19:05)

Then, we can write the following ei(j−1)θ−xeijθ+ei(j+1)θ = 0. Then, x turns out to be by simplifying
this x = eiθ + e−iθ, which makes it 2 cos θ. So, here our θ could be real or imaginary or complex we
did not determine that yet and depending on that. What the kind of form of cos θ will also depend,
whether it would be a genuine cosine function or hyperbolic function that will be determined by that.
So, if we here replace θ with −θ the result does not change it remains the same that we can see
readily. Therefore, the general solution for Cj would be Cj = Aeijθ + Be−ijθ, where A and B these
are arbitrary constants. How do we determine A and B? If, we go to the end positions, that is the left
side end of the chain this first equation here and right side end of the chain that is the last equation
here. These equations will actually help us determine A and B. So, if we consider p = 1, that is the
first atom of the chain, we can write C2 = xC1. And, if we have that then from this equation we can
write from this equation here, we can sorry from the general solution. General solution is this from
this one, we can write Ae2iθ + Be−2iθ = 2 cos θ(Aeiθ + Be−iθ). This equation is satisfied if we set
A = - B; that means, wherever we have B we will put - A. And, if we do that then Cj this quantity
becomes Cj = A(eijθ − e−ijθ), this is what we obtain. A is still an arbitrary constant and we did not
determine it is value so far. Now, let us do the following. Let us write down Cj = D sin θ. If, we
do that what would be the value of D as you can see would be D = 2iA, which is another arbitrary
constant D. And, if we consider the other end atom the extreme right atom this equation here. (Refer
Slide Time: 24:27)
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Then, we can write down that CN−1 = xCN . And, once we have that then in terms of D the equation
becomesD sin (N − 1)θ = xD sinNθ. Which is 2D cos θ sinNθ, how did we obtain cos θ?. Because
x = 2 cos θ by putting this in place of x we obtained this quantity. And, if we have this then we can
write that sin (N − 1)θ = 2 cos θ sinNθ, which is sinNθ cos θ − cosNθ sin θ. So, in this form
we have the constant D cancelled out we did not determine D, but we got rid of it as long as the
calculation of eigenvalue is concerned ok, we can now rewrite this. So, D still remains arbitrary yet
to be determined, we can write that tanNθ + tan θ = 0. So, this sin (N − 1)θ has been represented
this way. And, now if we divide this quantity, by cosine N theta, we will get this kind of a form and
we will see that it goes to 0, it becomes 0 ok. With this kind of a situation in other words we can write
sinNθ cos θ+cosNθ sin θ

cos θ cosNθ
= 0, which tells us that sin (N + 1)θ that is the numerator not the denominator,

the numerator must be 0. And, if that is true then we can solve for θ as θ = mπ
N+1

, where m is an
integer. We can see that θ is real, this is not imaginary this is not complex, this is real. And, we will
have N distinct solutions possible for distinct values of m, while m can take the value of any integer,
but by taking more than N number of values, it will repeat some of the solutions, that is obvious it is
a sin function. So, some of the solutions would be repeated, it would not create new solutions. (Refer
Slide Time: 29:37)

And, now if we find out the allowed values of E allowed energies, for this linear chain of hydrogen
atoms with finite number of that is N number of hydrogen atoms. So, the allowed energy values would
be E = α + 2β cos ( mπ

N+1
), where m can be taken in the range 1, 2 up to N for distinct solutions. You

can see that the energy eigenvalues here are discrete, because m is an integer N is a finite integer. So,
the energy eigenvalues cannot be continuous for finite number of hydrogen atoms in the system. But,
if N → ∞ you can see that the energy eigenvalues will reach the continum limit ok. Now, let us
find the mth state of the system, mth eigenstate of the system, which we denote as |ψ(m)〉. And, if we
take the expansion coefficients Cj with this index m, where j can also have values from 1 2 up to the
number of atoms, then C(m)

j can be written as D(m), D is not yet determined C(m)
j = D(m) sin (mjπ

N+1
).

So, in order to determine the state vector, we need to determine the coefficients of the basis elements
and in order to determine that we want to find out this arbitrary constant D at this stage. So, how do
we determine that, we can now use the normalization condition, 〈ψ(m)|ψ(m)〉 = 1 for orthonormality.

And, for that we need to have D(m) =
√

2
N+1

. Then, we have something interesting to find out the
eigenvalues. If, we have N = 1, we will just have 1 eigenvalue here which is the atomic eigenvalue.
If, we have N = 2 we will have a bonding state and an antibonding state, these are the levels energy
levels as we have seen in the case of hydrogen molecule. If, we have N = 3, we will have 3 states
here, bonding antibonding and nonbonding and so on. If, we have N → ∞, then we will have
a continuous spectrum of energy eigenvalues, that you can see right away. Now, let us consider
something interesting. We cannot really calculate for infinite number of atoms, but we can put periodic
boundary condition in place, which means zeroth atom and N + 1 atom these are the same.
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