
Solid State Physics
Lecture 28

Fermi-Dirac Distribution

(Refer Slide Time: 00:23)

Now, let us define a very useful quantity fiN subscript i superscript N, how do we define this? This
is the probability of there being an electron in the particular single electron level i when N electron
system is in thermal equilibrium that means, this probability is some of the independent weights that
we have found earlier PN(E) that is the probability of finding N electron system in any of those
states. So, this quantity is fiN = ΣPN(Eα

N) and this is the probability of there being an electron
in the particular single electron level i in the N electron system under thermal equilibrium. So, we
are summing over in this sum, this sum runs over all such states alpha where there is an electron
in the level i. Now, we make certain observations to be able to evaluate this quantity fiN . The 1st
observation is that the probability of an electron being in the level i that can be given as fiN which we
write now as 1−ΣPN(Eγ

N), what does it mean? The summation is over all N electron states in which
there is no electron at i, ith state, ith level that is what we are saying so, in order to be consistent. So,
these are the states, these are the probabilities for which there is no electron at ith level and 1 minus
that sum over that probability gives us the probability of finding one electron at ith level that is the
idea, that is how we are going to approach this. (Refer Slide Time: 03:44)

The 2nd observation that we make is if we consider (N + 1) electron state, we increase the number of
electrons by 1 and (N + 1) electron state in such a way that there is one electron at ith level. If we have
this and for this, if we get the energy equals EγN , then we can write fiN = 1 − ΣPN(Eα

(N+1) − εi).
So, what are these quantities? The sum runs over all states alpha that is (N + 1) in count and this
one is the energy of an electron at ith level that means what are we doing? We are following this
expression here and in this expression, we are changing the argument of PN by putting this energy of
(N + 1) particles and subtracting the energy of the electron at ith level. So, we are going back to the
same energy that was here for the N electron system. So, this is fine no problem here so far. So, the
part that we have summed here, this part sorry not the sum itself, this part, this part may be written
as PN(Eα

(N+1) − εi), let us find what this is. According to the definition of PN , this may be written
as e(εi−µ)/KBTPN+1(Eα

N+1), we have introduced something new that is µ here, this quantity is the
chemical potential. So, what is the chemical potential? Chemical potential is at a given temperature
say T, it is the energy cost for one particle, the energy difference that one particle makes in the system.
Free energy of (N + 1) electron system - the free energy of N electron system, µ = FN+1 − FN that
is how we define chemical potential. (Refer Slide Time: 08:56)

Now, we have this quantity defined now, this equation obtained now and if we now substitute this into
here back into this one, what do we obtain? The expression for fiN that we will obtain would look like
by making this substitution, it will be fiN = 1 − e(εi−µ)/KBTΣPN+1(Eα

N+1), this is what we get and
now, if we compare this with the definition of fiN , we would see that this part here makes something
similar to fiN . In more precise language, we can write fiN = 1−e(εi−µ)/KBTfiN+1. Just by looking at
the definition of fiN here, we obtain, we understand that this circled quantity is fiN+1. Now, we make
another observation, the last observation that is the above equation gives an exact relation between
the probability of one electron level i, being occupied at a temperature T in an N electron system and
in an (N + 1) electron system. Now, when the number of electrons in the system that is N is very
large of the order of Avogadro number let us say that is the kind of system we are interested in, we
are not interested in three-four electrons roaming around somewhere, we are interested in a real metal
or conductor so, the number of electrons that we are interested in is of the order of Avogadro number.
And when that is the situation, adding a single electron would not really change the probability, it
will make completely insignificant change in the probability so, we can ignore that and if we ignore
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that in place of fiN+1, we would write fiN and there is no significant difference between these two
quantities provided N is of the order of Avogadro number that is clearly understandable. And if we do
that from this expression, what we will obtain is fiN = 1

e(εi−µ)/KBT+1
, this is what we will obtain and

since we are only interested in very large values of N where N being a little different by one or two
electrons does not matter so, this index n is also irrelevant that means, we can easily drop our explicit
reference to N and write fi = 1

e(εi−µ)/KBT+1
, this is the Fermi-Dirac distribution function. And then,

the total number of electrons after finding this Fermi-Dirac distribution function would be simply sum
over i that is the single particle states N = Σifi = Σi

1
e(εi−µ)/KBT+1

, this will give us the total number
of electrons N. So, we have learnt the Fermi-Dirac distribution, we have derived the Fermi-Dirac
distribution by considering the probability, many of you have already gone through this derivation,
those who are going through this derivation for the first time, take some time to think about it because
this derivation is not something trivial, you need to think about the probability very accurately and in
peace, then only you will arrive at this kind of a; this kind of distribution function.
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