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Introduction to Sommerfeld Theory - I

(Refer Slide Time: 00:23)

After analyzing and finding out these things from our Drude model, now let us move on to an im-
proved model. So, how do we improve the model? We follow the suggestions by Sommerfeld and
move on to the Sommerfeld theory for metals. (Refer Slide Time: 00:48)

So, at Drude’s time and also, a lot more, a lot later, it was considered to be quite acceptable that you
apply kinetic theory of gases for electrons; that means, you treat the electrons using Maxwell Boltz-
mann statistics. But Maxwell Boltzmann statistics is not really valid for electrons because electrons
are identical particles and in the context of quantum statistics, you have learnt that identical particles
are like when their wave functions overlap and then, they can separate again in such a way that they
cannot retain their identity; you would not be able to distinguish them at all, no matter how well you
can resolve it. So, electrons are identical particles; that means, indistinguishable particles, they obey
from a Dirac statistics and Maxwell Boltzmann statistics is not applicable on them in a strict sense,
also you have Pauli exclusion principle that is obeyed by every fermion and electrons of fermions.
So, that principle is obeyed. So, you have to consider these things, while treating electrons in a metal.
Drude did not consider that because these things these theory did not exist at his time. Now, if we
consider all these things, then if we consider Maxwell Boltzmann statistics, then the velocity distri-
bution coming from the Boltzmann distribution that is given as this is the book Boltzmann velocity

function. This fB(v) = n( m
2πKBT

)
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2KBT , n is the number density times mass over twice by KB

is the Boltzmann constant times temperature. This is the Maxwell Boltzmann velocity distribution
function. But this function is not applicable because we need to apply fermi Dirac statistics on this.
Sommerfeld also applied Pauli Exclusion Principle and if now we consider these two things, we can
find the ground state properties of the electronic gas; electron gas. So, after considering the Fermi
Dirac statistics and Pauli Exclusion Principle, we assume that the electrons do not interact with one
another. Why do we consider that? Well, electrons do not interact with one another that is a require-
ment for free electron; but that is not actually true, this is something we assume because that makes
our work much simpler and let us start with something simple. Later on, we will try to move on
towards more complicated stuff. So, this is called the independent electron approximation. A single
electron can be described by its wave function ψ(−→r ) which is a function of its position. Now, if the
electron has no interaction with the other electrons in the system, the time independent Schrodinger
equation for that electron that can be written as − h̄2

2m
52 ψ(−→r ). It has no interaction with other

electrons as well as the nucleus as was considered in Drude’s approximations and that is also here.
So, the Hamiltonian is just the kinetic energy. So, Hamiltonian operator, kinetic energy operator is
− h̄2

2m
52 and that acts on the ψ(−→r ), the wave function of the electron to give us εψ(−→r ), where ε is the

energy eigen value. Now, we shall represent the confinement of the electrons to the volume by some
boundary condition, for solving this Schrodinger equation. What kind of boundary conditions should
we consider? We can consider that the solid is of a shape of a cube. Why cube? Because this is the
simplest kind of a shape that we can work with. Anything away from cube would make situations
a bit more complicated and that means, it has each side L and L = V

1
3 of this cube and now, we

need a boundary condition. Shall we consider that outside this cube there is no electron; that means,
there is no wave function, the wave function on the surface of the cube goes to 0? If we consider that
kind of a boundary condition, then you can readily see that the electronic wave functions within the
material, within the cube that is going to be stationary waves, subject to this boundary condition. But
we are interested in transport properties; electrical transport as well as thermal transport and transport
properties that means, electrons are moving that would be better represented by non stationary that
is running waves. So, the wave function going to 0 at the boundary is not really suitable, then what
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kind of boundary condition do we take, do we assume here? Well, periodic boundary conditions may
be better. What does periodic boundary condition mean? Let us assume we have this kind of a box,
its a cube, not a square. If we have this kind of a situation, then if an electron goes out from this
surface; at the same time, we assume that it enters from this other kind of a surface. So, its a periodic
arrangement of this box everywhere in the space that kind of a boundary condition we would impose.
How do we impose this boundary condition in terms of mathematics on the wave function? (Refer
Slide Time: 09:51)

So, in 1-dimension, it would mean that if you have ψ(x + L); capital L is the side of the cube,
it would be = ψ(x). This is the boundary condition and if we go for 3-dimension, it would be
ψ(x, y, z+L) = ψ(x, y, z); ψ(x, y+L, z) = ψ(x, y, z), ψ(x+L, y, z) = ψ(x, y, z). This is also called
Born-von Karman boundary condition or simply periodic boundary condition ok. After learning
this periodic boundary condition, we now solve the Schrodinger equation subject to the boundary
condition. The trial solution would be ψk(−→r ), where k is the index is given as ψk(−→r ) = 1√

V
ei
−→
k ·−→r

V is the normalization condition within this box, and ei
−→
k ·−→r is a plane wave solution. And it will

have an energy ε(
−→
k ) = h̄2k2

2m
. So, here

−→
k is the position independent vector, it is the wave vector.

And now, let us try to see the significance of this k. If we have this kind, this form of the wave
function, then this form that is the plane waveform of this wave function, it is also an eigenstate of
the momentum operator. It is of course, an eigenstate of the Hamiltonian, also an eigenstate of the
momentum operator and if it is an eigenstate of the momentum operator, the momentum operator
can be written as −→p = h̄

i
∂
∂−→r = h̄

i

−→
5 and when this kind of a momentum operator acts on the wave

function; that means, the plane waveform, we get the eigenvalue that is h̄
−→
k . This is the eigenvalue of

the momentum operator; that means, h̄
i

−→
5ei

−→
k ·−→r is nothing but h̄

−→
k ei

−→
k ·−→r . (Refer Slide Time: 14:37)

So, we can now interpret k as a wave vector and the corresponding the Broglie wavelength λ = 2π
k

for
the electron. If we now invoke the periodic boundary condition, then this allows only certain discrete
values of k that would satisfy the condition and what discrete values? If we have eikxL = eikyL =
eikzL = 1, only then the boundary condition would be satisfied; not otherwise that means, we do not
have the continuous values of k accessible anymore only certain discrete values are allowed. If we
have eikzL = 1 that means, z = 2πin, where n is an integer. The components of k, then must take
the form kx = 2πnx

L
;ky = 2πny

L
; kz = 2πnz

L
; where, nx, ny, nz these are integers. Now, if we consider

a region of the k-space and if it has a volume Ω, then this volume will contain Ω
2π
L3

, this number of k

points. So, this simplifies to ΩV
8π3 . So, this is the number of k values. Other values are not allowed

anymore subject to the periodic boundary condition that we have considered. In other words, the
number of allowed k values per unit volume of the k space.
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