
Solid State Physics
Lecture 24

Thermal Conductivity

Hello. We were discussing Drude model for free electrons and we have already discussed the transport
properties of electrons in the Drude model and the electrical conductivity. Now we are going to
consider and discuss the Thermal Conductivity the thermal transport of electrons from the Drude
model. (Refer Slide Time: 00:51)

So, we are going to discuss the thermal conductivity of metals and if we consider metals or for that
matter any other kind of material, we will see that when the lattice is at an elevated temperature the
lattice itself starts vibrating; that means, every atom starts vibrating in that system in that crystal.
And when that entire lattice starts vibrating a wave propagates throughout the lattice, this kind of
wave the quantum of this kind of wave is called phonon and this phonon takes a significant part of
the thermal conductivity in a material and metals are no exception for that. However, in case of
metals you can see that there is also; an also a thermal conductivity associated with the motion of the
electrons. You have possibly noticed that good metals good conductors of electricity are also good
conductors of heat and here the contribution comes from the electrons how? Well, if we consider
Drude model we have assumed following Drude that the electron after collision it emerges with a
velocity that is proportional to the temperature at that point in space. However, the direction of
that velocity is random. The magnitude of that velocity that is the speed that is proportional to the
temperature. So, in real life also its somewhat similar the temperature plays a significant role in
dictating exactly what would be the velocity of that electron after it emerges from a collision. So, if
we assume this kind of situation with Drude model, we can calculate the thermal conductivity and
the we have to define a thermal current in this case. Let us define the thermal current and let us try
to calculate it applying some analytical mathematics. So, let us define thermal current density

−→
j q;

q is for thermal current density. And how do we define that? As we can clearly understand that the
heat conduction is along the opposite direction to temperature gradient. There must be a temperature
gradient in order to have some heat conduction and if the temperature gradient is given as the gradient
of temperature just like this

−→
5T . Then this heat conductivity sorry the thermal current density can

be expressed as
−→
j q = −κ

−→
5T , it would be along the opposite direction of this temperature gradient

and there must be a constant that we call kappa. This kappa is the thermal conductivity which is
nothing, but a proportionality constant in this context. Now if we consider for simplicity the situation
in one dimension, then we can write jq the thermal current density which is no longer a vector in one
dimension, we do not need to mention its vectors properties jq = −κdT

dx
, capital T is the temperature

and x is that one dimension. Now, if we write the thermal energy per electron as ε(T ), its of course,
a function of T the temperature, then an electron whose last collision was at a space point x prime,
it will have the thermal energy of ε(T [x′]) which is a function of temperature at the spatial point x
prime, it had its last collision at x’. According to our assumption within Drude model, the velocity is
proportional to the temperature and the thermal energy is dictated by the last collision that took place
some time ago and the electrons. So, if we consider a point in space, here in case of one dimension
say this is a line here the point is x and there are electrons that are coming from the hotter side say this
left hand side is hotter and say the right hand side is colder. So, you will have the electrons coming
from the hotter side here and some of the electrons would come from the colder side here. Let us
use a different color for colder electrons. So, this kind of an arrangement will be there. If there are
n number of electrons here we can assume that half of them n

2
is coming from the hotter side and

another n
2

is coming from the colder side. Now, the thermal energy per electron that is coming from
the hotter side that can be given as ε(T [x− vτ ]) what is this? x is the coordinate of this point, v is the
speed of this electron and tau is the relaxation time the mean free time. So, we are saying that it was
here at minus [x−vτ ] this kind of a location when it had the last collision on an average this would be
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the situation. So, the energy of this electron the thermal energy of this electron on an average would
be ε(T [x − vτ ]). And if we consider the other kind of electron that is coming from the colder side,
then we will have their energy as ε(T [x + vτ ]) this kind of an energy would be there. Now, we are
having n

2
number of electrons coming from the colder side and n

2
number of electrons coming from

the hotter side. So, this is the total energy of the electrons coming from the hotter side, this is the total
energy of the electrons coming from the colder side under this kind of a situation if we add these two
we will get the thermal current density. (Refer Slide Time: 10:25)

So, the thermal current density can be given as jq = 1
2
nv[ε(T [x − vτ ]) − ε(T [x + vτ ])]. Now if

we have the variation in temperature over a mean free path that is l, l is the mean free path which
can be given as l = vτ . And if this quantity is very small; that means, if there are enough number
of electrons in the system to have frequent collisions and the mean free path is not too long then
according to the definition of differentiation according to the definition of derivatives we can expand
it about the point x and we can write that the thermal conductivity jq = nv2τ dε

dT
(−dT

dx
), dT

dx
is the

temperature gradient. So, this difference in energy sorry this is not small t this is temperature that we
have written as capital T. So, this happens to be the current the thermal current density if we expand
this quantity for small values of mean free path that is vτ . So, for vτ to be small we can do this
and this difference is actually written by the product of dε

dT
(−dT

dx
). Now, if we extend this from one

dimension to three dimension, then we can write v as vx and if we average over all directions, then
〈vx2〉 = 〈vy2〉 = 〈vz2〉 = 1

3
〈v2〉 where v is the total velocity. So, n dε

dT
this can be expressed as the

total number of electrons over the volume of the system N
V
dε
dT

which is nothing, but if we multiply

dε by N we will get
dE
dT

V
total energy of the system dT divided by the volume which is Cv the heat

capacity of the system for a constant volume. That means, given from this equation we can write the
thermal conductivity in three dimension the thermal current density in three dimension not the thermal
conductivity as jq = 1

3
v2τCv(−

−→
5T ). So,if this is the expression for the thermal current density, then

the thermal conductivity kappa this quantity can be given as this (−
−→
5T ) would be removed the only

thing that will remove remain here isκ = 1
3
v2τCv and this is the thermal conductivity due to the

conduction electrons that we obtained from the Drude model and v2 is the mean squared electron
speed. So, this is what we obtained from Drude model for the electronic contribution to the thermal
conductivity.
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