
Solid State Physics
Lecture 23

AC Electrical Conductivity

(Refer Slide Time: 00:23)

After having this insight on the hall into the hall coefficient, let us move on to the AC Electrical
Conductivity of a metal. (Refer Slide Time: 00:36)

When we are talking about AC electrical conductivity; that means, alternating current, we are going
to apply a time dependent electric field on the metal. So, to calculate the current induced in a metal
by time dependent electric field, we need to assume a form of the electric field. So, the electric field
is assumed to have this kind of a form, it is in complex form electric field is

−→
E (t) = Re(

−→
E (ω)e−iωt)

and we take the real part of this quantity that is our electric field. Now, the equation of motion of
the electrons, for the momentum per electron, that is d−→p

dt
= −

−→p
τ
− e
−→
E . Now, we want a steady

state solution for this problem. So, let us consider a trial solution, for this differential equation, for
this differential equation, we can consider an exponential trial solution −→p (t) = Re(

−→p (ω)e−iωt) and
we have to take the real part of this quantity, because the momentum is real. And, substituting this
complex p not the real part is this entire complex quantity. And, the complex e that is this entire
quantity not just the real part into the differential equation, we can obtain something useful and then
take the real part to get the physical quantity. That is the standard approach that you have seen
elsewhere, maybe including other properties of electromagnetic waves. So, if we do that we would
find that we must satisfy a condition −iω−→p (ω) = −

−→p (ω)
τ
− e
−→
E (ω). This you will find by putting

this expression of p complex expression of the momentum and complex expression for the electric
field into this differential equation here ok. Now, our volume current density

−→
j = −ne−→p

m
, this is the

current density. And, in complex term it can be written as in complex form it would be written as−→
j (t) = Re(

−→
j (ω)e−iωt) and we will take it is real part for the real physical quantity. So, now putting

this into appropriate place from this equation here, we can write
−→
j (ω) = −ne−→p (ω)

m
, which is taking

the value of −→p (ω) from this expression here, we can write
−→
j (ω) = −

ne2

m

−→
E (ω)

1
τ
−iω .This comes from here

ok. (Refer Slide Time: 06:33)

Once, we have obtained this, then it is the
−→
j (ω) the current density can be written as customary form

of the Ohms law, σ(ω)
−→
E (ω) the conductivity as a function of omega times the electric field, which is

also a function of omega now. Here this quantity σ(ω) is called the frequency dependent conductivity
or the AC conductivity. And, what it is; what is it is value? σ(ω) can be written as σ0

1−iωτ . And, σ0
as we have defined earlier is nothing but ne2τ

m
. Now, if we consider 0 frequency, then σ(ω) becomes

σ0, ω → 0 here and if ω → 0 it is σ0
1

, which is σ0. So, it correctly reduces to the drude result
for 0 frequency. The most important application of this result is the propagation of electromagnetic
radiation in a metal. So, how does an electromagnetic radiation propagate in a metal? Maybe you
have already learned that electromagnetic radiation does not propagate in an ideal conductor. There
is no electric field inside an ideal conductor and if there is no electric field inside an ideal conductor,
there is no question of propagation of the electromagnetic wave that is perfect. But, there is nothing
called an ideal conductor. Every conductor that we are surrounded with are real conductors and at
very high frequency, you cannot expect that the electric field would instantaneously be nullified by
the conductor. At low if the electric field is of very low frequency then that is valid no problem with
that, but if you have very high frequency, then it does not work. So, how does the electric field get
nullified, they are charges free, charges in the conductor in the metal, that moves from one place to
another to nullify this electric field. And, that movement of charges that requires certain time, that
depends on the properties of the material. And, if enough time is not given for those electrons to
move around, then the electric field would not get completely nullified. And, electromagnetic wave
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to some extent can propagate inside a metal. Provided the electromagnetic wave is of very high
frequency. Let us understand that mathematically. So, if we consider current density

−→
j (−→r , ω), then

it can be written as σ(ω)
−→
E (−→r , ω). This is valid whenever the wavelength of the electric field that

is λ, that is large compare to the electronic mean free path that is ’l’. So; that means, this is valid
when λ that is the wavelength of the electric field, when this is greater than l, which is the mean free
path of the electrons. Now, this condition normally satisfies is normally satisfied, in case of ordinary
metals and visible lights. Now, if we assume that the wavelength is large compare to the mean free
path we may proceed like, in the presence of specified current density that is

−→
j , we can write the

Maxwell’s equation if the
−→
j is given, the Maxwell’s equations would take the form in CGS units

of course, because we have been working with CGS units.
−→
5 ·
−→
E = 0 of electric field inside a

metal that is a charge free region is going to be 0,
−→
5 ·
−→
H = 0.

−→
5 ×

−→
E = −1

c
∂
−→
H
∂t

in CGS unit and
−→
5×

−→
H = 4π

c

−→
j + 1

c
∂
−→
E
∂t

, which is the amperes law modified by Maxwell and expressed in CGS units.
(Refer Slide Time: 13:22)

If, we have these Maxwell’s equations and if we look for a time dependence of the form of e−iωt.
Then, in case of metals, we can express the current density

−→
j in terms of the electric field

−→
E , using

the
−→
5 × (

−→
5 ×

−→
E ) = −

−→
52−→E = iω

c
(
−→
5 ×

−→
H ). This quantity = iω

c
(4πσ

c

−→
E − iω

c

−→
E ) this implies

that −
−→
52−→E = ω2

c2
(1 + 4πiσ

ω
)
−→
E . This has the form of the usual wave equation. The usual wave

equation looks pretty similar to this. And, if this is similar to the usual wave equation, let us write it
in the compact form of the wave equation −

−→
52−→E = ω2

c2
ε(ω)
−→
E , where ε(ω) is the complex dielectric

constant. So, this equation is just like the equation of electromagnetic wave in a dielectric material
with this dielectric constant here. And, what is the value of this dielectric constant now? The complex
dielectric constant this ε(ω) = 1+ 4πiσ

ω
, but this expression whatever we have obtained, this is not for

a dielectric material, this is for a metal. (Refer Slide Time: 16:29)

Now, let us consider different ranges of frequency. If, we are at a frequency that is high enough to
satisfy this condition ωτ � 1, if this condition is satisfied. Then to a first approximation we can
write the ε(ω) = 1− ωp2

ω2 . So, we have introduced a new quantity ωp here, ωp is known as the plasma
frequency. This quantity is given as ωp2 = 4πne2

m
. Now, when ε that is the dielectric constant is

real and negative; that means, when ω < ωp in this kind of a situation, the solution would be an
exponential decay in space, there would not be any propagation. That means, if this electromagnetic
wave enters a metal, it is intensity will decay very rapidly as it gets inside the metal, as it progresses
through the metal, but that electromagnetic wave would not propagate into the metal. So, there would
be a skin region of that metal, in which that electromagnetic wave will enter and sharply decay the
intensity will sharply decay for this kind of a situation, that is no propagation. When the dielectric
constant ε is positive; that means, ω > ωp in this situation the solution will become oscillatory and the
electromagnetic wave can propagate inside the metal. In this condition the metal becomes transparent,
EM wave propagates, transparent metal. This is something interesting metal should not in general be
transparent metals usually reflect electromagnetic wave. But, when this condition is attained that is the
frequency of the incident wave is pretty high, higher than the characteristic plasma frequency for that
metal, that electromagnetic wave propagates; that means, the electrons cannot move so, fast that it can
nullify the electric field, inside the metal. Now, if we express τ that is the relaxation time in terms of
resistivity, then we can write ωpτ = 1.6× 102( rs

a0
)
3
2 ( 1

ρµ
). The alkali in case of the alkali metals, it has

been observed that for ultraviolet rays the alkali metals become transparent. So, the plasma frequency
the ω was the angular frequency, ν is the actual frequency that is νp =

ωp
2π

= 11.4( rs
a0
)−

3
2 ×1015 Hertz.

Or the wavelength λp the plasma wavelength that = c
ν
= 0.26( rs

a0
)
3
2 × 103 Å. So, this is valid for the

alkali metals that is what we find this should be minus ok. So, this is a very important consequence
that is at very high frequency the metal becomes transparent. Let us consider another important
consequence the second important consequence; the electric charge density has an oscillatory time
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dependence. So, the electric charge density is it goes as e−iωt. (Refer Slide Time: 23:10)

If, we write down the equation of continuity, that we have learnt in electromagnetism, then we can
see that the

−→
5 · −→j = −∂ρ

∂t
, which is nothing, but the conservation of charge. So, ρ is the volume

charge density in this context and this means
−→
5 · −→j (ω) = iωρ(ω). And, now if we consider the

Gauss law, we can write
−→
5 ·
−→
E (ω) = 4πρ(ω). Now, with this comparing these 2 equations we find

that iωρ(ω) = 4πσ(ω)ρ(ω). And, this equation will have a solution provided we have 1+ 4πiσ(ω)
ω

= 0.
Only then this equation will have a solution. And, this is the same as the condition for propagation.
Now, what does this mean? This means a charge density wave is created for the propagation of the
electromagnetic wave. So, there is a charge density of the electrons in the system and that charge
density itself oscillates, when the electromagnetic wave propagates through the metal. And, this kind
of oscillation is called the plasma oscillation. So, we can see a wave in the charge density itself as
a function of as a consequence of the electromagnetic wave passing through the metal. And, this
happens only when the frequency of the incoming electromagnetic wave is pretty high. Otherwise,
that electromagnetic wave gets reflected only it can only penetrate the skin of the metal nothing
beyond that, but with a very high frequency it can go through the metal, pass through the metal, and
it makes it creates an oscillation in the charge that is there in the metal.
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