
Solid State Physics
Lecture 22

Hall Effect and Magnetoresistance

Hello, we have started discussing Drude model and within Drude model we have already discussed the
assumptions behind underlying assumptions behind this Drude model and also how electron transport
occurs and the difference in momentum of the electrons. Now, we are going to discuss the Hall Effect
and Magnetoresistance, how what we understand about this from Drude model. (Refer Slide Time:
01:02)

So, what is Hall effect? Let us consider that first we have a Hall bar of metal which looks somewhat
like this. Here we have this kind of a coordinate system this is say x-direction, this is y-direction,
this is y-direction and this is z-direction; that means, this one is x direction, this one is y-direction
and this one is z-direction. This kind of a situation we have. Now, this is a bar of metal if we
apply an electric field along the x-direction and we call it Ex there would be a current along the
x-direction we call that jx and now, if we apply a magnetic field H along the z-direction positive
z-direction then what happens? Then, we have a Lorentz force acting on the moving electrons. The
move the electrons are moving along the negative z-direction in this kind of a situation in any how
the charges are moving along x be it positive or negative and there is an applied magnetic field along
the z-direction. So, the Lorentz force coming from this is that will be given as − e

c
−→v ×

−→
H this is the

expression of the Lorentz force in CGS units. In SI unit it is a bit different, but since we are having,
we are considering everything in CGS in it let us stick to that. Now, this one applies on the electrons
and it deflects the electron along the y-direction. When does it reach an equilibrium? When some
Hall voltage is developed that opposes the effect of the Lorentz force, then this arrangement comes
into an equilibrium; that means, there is no current along the y-direction. So, when the Lorentz force
is there we have positive charges accumulated here and negative charges accumulated here. This is
the kind of situation we end up into. So, here we are interested in two quantities – the first quantity is
called the magnetoresistance; it is ρ(H) resistivity as a function of the applied magnetic field we can
write which is Ex

jx
this is the magnetoresistance and Hall found this quantity to be field independent;

that means, this is the independent of the applied magnetic field according to Hall. And, the other one
is the size of the transverse electric field Ey which is applying along this direction Ey. Now, because
Ey balances the Lorentz force, you can expect it to be proportional to the magnetic field as well as
the current along the x-direction. So, we can define a quantity called Hall coefficient this would
be defined as RH = Ey

jxH
Hall coefficient and remember something interesting this Hall coefficient

depends on the sign of the carrier. So, if your carrier is electron it will have certain sign; if it is hole it
will have the opposite sign. Why that is the case? You can think about it in terms of Lorentz force the
value the sign of jx in terms of. So, in terms of Ey that is generated due to Lorentz force and in terms
of the sign of jx, in terms of these two things you can think about it why Hall coefficient is sensitive
to the nature of the sign of the carriers be is it if it is electron or hole. And, this is something very
important because this is how we in semiconductors we find out what the majority of the whether the
majority of the carriers is electrons or if it is hole. Now, we want to calculate the Hall coefficient and
the magnetoresistance. How do we do that? We first find the current density jx and jy in the presence
of electric field. So, if we consider arbitrary components of Ex and Ey that is the components of the
electric field and in the presence of a magnetic field H along the z-axis we can then write down the
force acting on each electron which is position independent it does not depend on the position of the
electron. (Refer Slide Time: 08:58)

So, the force acting on each electron this can be given as
−→
f = −e(

−→
E + −→v ×

−→
H
c
) of course, in CGS

unit. In CGS unit this is the expression for force and the rate of change of momentum that is not force
there is another damping term that we have found out earlier. So, the rate of change of momentum
d−→p
dt

in this case can be written as the force −e(
−→
E +

−→p
m
×
−→
H
c
)−

−→p
τ

. The last term is the damping term
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that we have worked out earlier. Now, in the steady state the current is independent of time. If the
current is independent of time that means, this quantity d−→p

dt
goes to 0 and if this quantity goes to 0

we can write down 0 = −eEx − ωcpy − px
τ

considering the electric field is applied externally along
the x-direction and also the momentum of the electron is along the x-direction, and in the steady state
there is no motion of the electrons no resultant motion of the electrons along the y-direction because
the Hall voltage and the Lorentz force they have balanced each other. Now, if this is the situation;
that means, we can simplify it by writing this 0 = −eEy + ωcpx − py

τ
which is just changing the sign

changing Ex for Ey and Ey for Ex px for py, py for px and if we do this we have introduced ωc here
a new term. So, ωc would be given as e × H

mc
. So, if we now multiply this equation by −neτ

m
both

equations both sides. (Refer Slide Time: 12:57)

And, if we rewrite the components of the current density we will find that σ0Ex = ωcτjy + jx and
from the other equation σ0Ey = −ωcτjx + jy what is σ0? It is the DC conductivity that we found in
Drude model, ok and this is the DC conductivity when there is no magnetic field in the system. The
Hall field that is Ey, this quantity is determined by when we have it is determined when we have no
transverse current; that means, along y-direction there is no current jy = 0. This is the time when we
determine the Hall field because that is the saturation of the Hall field. So, if we set jy = 0 in the
second equation, what do we obtain? We obtain the value of Ey = −(ωcτ

σ0
) × jx. This is writing the

value of each quantity −( H
nec

) × jx. How did we define the Hall coefficient? Ey

jxH
. Here we have the

expression for Ey as this. So, Ey

jxH
will give us RH the Hall coefficient = − 1

nec
, it is simply this. This

is the Hall coefficient. We have found that for metals Hall coefficient depends on nothing except the
density of the carriers that is n it depends only on n. The other two quantities the charge of a proton
and the velocity of light these are universal constants. So, the Hall coefficient only depends on the
density of carriers and it is inversely proportional to the density of carriers.
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