
Solid State Physics
Lecture 19

Electronic Tunneling in Covalent Bonds

(Refer Slide Time: 00:23)

Now, let us find out whether β is a positive number or a negative number. So, the way we have defined
β, it is h12 which is nothing but 〈1|h|2〉. What is h? The Hamiltonian; the electronic Hamiltonian is
given as − h̄2

2m
∇2, this is the kinetic energy plus potential energy due to two atoms; V1(−→r ) + V2(−→r ).

Now, V1(−→r ), what is this? This is the electrostatic potential of the nucleus in atom 1 and V2 is the
electrostatic potential for the nucleus in atom 2. So, if we try to find out h12 = 〈1|− h̄2

2m
∇2 +V1(−→r )+

V2(−→r )|2〉 ; we will write this part first, V2 would be separated. (Refer Slide Time: 02:40)

So, let us write it that way. If we separate V2, that will give us h12 = 〈1| − h̄2

2m
∇2 + V1(−→r )|2〉 +

〈1|V2(−→r )|2〉. Now, if we have this, then this part here this is the Hamiltonian part here is just the
Atomic Hamiltonian for the first atom. And if that is the case, then it acting on the left side state 〈1|
gives us 〈1|ε. So, this operation would give us 〈1|ε|2〉 and then. So, the inner product; ε is just a
constant, it can be taken outside. So, it is an inner product of 〈1|2〉 = 0. So, the only non-zero term
that we have is this one, this quantity 〈1|V2(−→r )|2〉 6= 0; that means, h12 = 〈1|V2|2〉. So, the potential
V2 is attractive because it is between electron; one electron and the nucleus from the other atom. This
potential is attractive, therefore, it is negative and if it is negative, then β must be negative quantity;
β cannot be positive. (Refer Slide Time: 04:37)

So, if we have β negative, then the molecular state |ψb〉, the bonding state, this bonding state has
energy E0 + β. So, this is less than E0 and the corresponding symmetrical combination, so this one
corresponds to the symmetrical combination |1〉 + |2〉 normal before normalization constant times
|1〉 + |2〉 that kind of a state. So, if we try to plot the wave function and the charge density, we will
get this kind of a plot. Here, we first plot the wave function. This is how the wave function would
look and if we now plot the charge density that will look somewhat like this. So, you can see that
there is some charge accumulated at in between 2 atoms. So, this is the nucleus of one atom, this is
the nucleus of another atom and in the y axis, we have plotted |ψb〉 and ρb; in the x-axis, it is r. This
is how it looks and this is called the bonding state. Let us look at the antibonding state now. The
molecular states |ψa〉 that has energy E0 − β; β is a negative quantity. So, this energy is greater than
E0 and it corresponds to anti-symmetric combination of the basis elements. If we try to similarly plot
the wave function and the charge density, we will find the wave function is will look somewhat like
this. Because, the one is there is a positive sign in front of one and negative sign in front of the other
and the charge density cannot be negative because its mod square kind of a thing. Sorry, it is |ψa〉
and it is ρa which is |ψa(r)|2. So, here in between, you do not have any charge density and this is
the antibonding state. So, the bonding state leads to charge being accumulated in the region between
the atoms and the antibonding has a cusp, there is no charge at the midpoint. Now, after analyzing
this, we shall go through the analysis of hydrogen molecule all over again; but starting from a time
dependent Schrodinger equation this time. Why do we do that? Once we do that the reasons would be
very clear, this is very important and this let us understand the electron sharing in case of a covalent
bond; exactly how the electron is shared, we have seen that in case of bonding, there is some charge
density in between. But the electron sharing picture as a function of time is not clear to us and we
cannot have something as a function of time, when we consider the time independent Schrodinger
equation. If we consider the time dependent one, we will understand the physics as a function of
time. So, let us go for that ok. (Refer Slide Time: 09:21)

So, let us first write down the time dependent Schrodinger equation. It can be written as ih̄ ∂
∂t
|ψ〉 =

h|ψ〉. And as we have represented expanded |ψ〉 earlier in the basis of |1〉 and |2〉, we can write
|ψ〉 = C1|1〉 + C2|2〉 and if we put this expression of |ψ〉, we would get two coupled differential
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equations. What are those equations? We will get if by putting |ψ〉 into the differential into the time
dependent Schrodinger equation, ih̄ ∂

∂t
C1(t) = h11C1 +h12C2and ih̄ ∂

∂t
C2(t) = h21C1 +h22C2. These

equations have to be solved with some initial condition for C1 and C2. Now, you can note that C1 and
C2, these are not constants; these are function of time. So, as before we write that h11 = h22 = E0

and h12 = h21 = β and we know this time that β must be negative. So, we have two first order
differential equations. These two that we need to solve. We can start with a trial solution and we will
need some initial condition, actually two initial conditions; one for C1, one for C2 in order to be able
to solve these two coupled differential equations. So, first order differential equations with constant
coefficient, it can be solved with exponential functions. So, let us try with exponential functions
C1 = A1e

−iωt and C2 = A2e
−iωt. Now, if we insert these expressions for C1 and C2 into these two

coupled differential equations, then we would get ω corresponding to the bonding and antibonding
case. So, for bonding ω would be ωb = E0+β

h̄
and ωa antibonding ωa = E0−β

h̄
. This is what we will

find. (Refer Slide Time: 13:50)

And now, we need to find the solutions for C1 and C2. The solutions for C1 and C2 can be written
as C1(t) = a exp (−iE0+β

h̄
t) + b exp (−iE0−β

h̄
t); a is a new constant does not matter. Similarly,

C2(t) = a exp (−iE0+β
h̄
t)− b exp (−iE0−β

h̄
t); where, a and b are arbitrary constants so far subject to

some initial condition, we can determine the values of a and b. Suppose, we have an initial condition,
where at initial time t = 0, the molecule was in state |1〉. If this is the situation, then the initial
condition can be written as psi 1 at time equals 0 is given as 1 and sorry, C1(0) = 1 and C2(0) = 0.
This is the initial condition that we are assuming just for the sake of understanding. Then, a = b = 1

2

you can find out and C1(t) = exp (−iE0

h̄
t) cos (β

h̄
t). C1(t) = exp (−iE0

h̄
t) sin (β

h̄
t). This would be the

expression for C2. The two amplitudes, you can see it oscillate harmonically as a function of time. It
is clear from this expression. (Refer Slide Time: 17:17)

Now, the probability of the molecule in state |2〉, if we try to calculate that, this would be given as
|C2(t)|2 exponential term will go away, if we take complex conjugate and multiply. So, sin term will
remain. It is sin2(βt

h̄
). This is what we will this is this will be the probability of the molecule in state

|2〉. So, we are considering 1 electron of the molecule and its state is its state becomes exactly 2 with
this probability. Once we have found this that means this probability |C2(t)|2 = 0 at t = 0; this
|C2(t)|2 = 1 at t = h

4|β| and |C2(t)|2 = 0 at t = h
2|β| and so on. It is a harmonic function. You can see

it is a sin square like a function. So, it will go on oscillating like this between 0 and 1. So, now here
is a homework for you; plot |C1(t)|2 and |C2(t)|2 with time. That will give you the probability of the
electron in the molecule being in state |1〉 and state |2〉 as a function of time. So, by plotting this also
from whatever we have already seen the behavior of this function that the electron oscillates between
atom 1 and atom 2, keeps on hopping. Hence, the term the off diagonal terms are called hopping
terms. Now, how can it keep on hopping between two atoms? Because there is a potential barrier in
between; the ionization energy of hydrogen atom, how much is it? This equals 13.6 electron Volt;
huge energy, the electron cannot so easily cross this kind of a barrier. So, how can it hop between
two atoms? The electron actually tunnels through this barrier; it does not overcome the barrier. So,
the electron does not go over the barrier. In quantum mechanics even though, it cannot go over the
barrier; it is possible to tunnel through the barrier and that is what is happening in this kind of a case.
So, we understand something very interesting about the covalent bond, not only the electron hops
between two atoms which certainly it does, which we already knew the electron sharing means that.
It has to tunnel through the barrier; it cannot go over the barrier that is something very interesting that
we have realized at this stage. And the probability of tunneling with time is probability of tunneling
per unit time that is given as 2β

h
. So, in case of covalent bond, we can see that the electron tunnels

through the barrier and this is very different from electron transport. In case of electron transport,
the electron would not be confined between these two atoms. It would go far away. Actually, in case
of solid, if we consider a solid instead of a diatomic molecule that we have done here, the electron
would hop between two atoms and it can actually go far away, but it. So, it can hop from 1 to 2, 2
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to 3, 3 to 4 and so on with some finite probability of course, that is the probabilistic dynamics. But
still that movement the probability of that hopping is given by this per unit time. So, it is so low that
it is not transport. In case of transport, it the electrons behave like free electron; that means, it hardly
sees any barrier like this and subject to an external electric field, it can easily move from one place to
another. That kind of a movement is moving over the barrier. So, transport is moving over the barrier
and tunneling is and covalent bond is tunneling through the barrier, not moving over the barrier. That
is how we understand the difference between transport and covalent bond and covalent bond, this is
how the covalent bond takes place; mathematically, this is how we can analyze it and it creates a quite
strong bond.
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