
Solid State Physics
Lecture 18

Covalent crystals: Linear Combination of Atomic Orbitals

Hello. We have already discussed about ionic bonds in solid, now we are going to discuss about the
Covalent bonds. (Refer Slide Time: 00:36)

So, what are the covalent bonds? Where do we find covalent bonds? The covalent bond is formed
by sharing electrons between two atoms and this is found in many molecules and many solids. For
example, in case of hydrogen molecule we haveH2. So, two hydrogen atoms come close to each other,
each hydrogen atom has 1 proton and 1 electron and those electrons are shared between both atoms to
form this H2 molecule. Now, why is this electron shared and why that helps forming a molecule that
means, lowering the energy of the entire system? That is something we need to understand. Similar
example is nitrogen molecule, oxygen molecule or for example, solid form of carbon say graphite or
diamond whatever, diamond is a good example. So, here the bond between two carbon atoms is so
strong that it is comparable to that of sodium chloride. That means, the bond of a covalent compound
is quite strong; it is not at all weak. There is no electrostatic interaction just by sharing electrons;
they form this kind of a strong bond in few cases, not always. But the bond is in general quite strong.
Always the bond is quite strong; where, diamond is one of the highest strength examples. That is what
we can say. Now, we want to understand how this electron is shared these electrons are shared and
how that lowers the energy of the entire system. So, we want to understand covalent bonding in terms
of mathematics. So, then, we need to form a model. For simplicity, instead of a solid, let us consider
a homonuclear diatomic molecule. Whatever physics we understand for this is valid for the solid as
well; but for solid this analysis would be a bit cumbersome. So, in order to avoid that, we analyze the
homonuclear diatomic molecule and we will have that insight that can be used in solid as well. So, let
us consider for the simplicity, the simplest homonuclear diatomic molecule that is H2 molecule. And,
can we solve the corresponding Schrodinger equation to find the quantum states? If we write down the
Schrodinger equation, then there would be along with other terms repulsion between two electrons,
the Coulomb repulsion between two electrons and that is going to make our life miserable actually.
So, we cannot really calculate that rather we can do a linear combination of atomic orbitals and try to
develop a useful insight into the problem. So, let us say ψ represents the molecular state. |ψ〉 is the
electronic state one electron state base actually in the molecule. If we consider this, then we would
need a basis to expand |ψ〉 and if we consider formation of H2 molecule by bringing two hydrogen
atoms close together. Then if we write |1〉, this state as the electronic state of the first hydrogen atom.
And similarly, |2〉, this would be the electronic state of the second hydrogen atom and in this basis;
we would like to expand |ψ〉. We can do a reasonable job with this representation. Now, these states
|1〉 and |2〉, these correspond to isolated hydrogen atoms not the molecule and |ψ〉 corresponds to
1 electron state, but in the molecule. Since we are interested in the ground state of the molecule,
we will assume that |1〉 and |2〉 these states are the ground states of the corresponding atom that is
1S states in case of hydrogen atom. And if the energy of these electrons in the hydrogen atom be
represented as ε, so this is the energy, atomic energy of those electrons. If we have small h1 and small
h2; small h. So, small h1 and small h2 are the Hamiltonian’s of atom 1 and atom 2 we are putting
small h because capital H is reserved for hydrogen, representing hydrogen. So, small h represents the
Hamiltonian in this case. So, from our definition, we can write that h1|1〉 = ε1. Similarly, h2|2〉 = ε2.
Now, we make two assumptions; in the first assumption, we assume that the two basis states |1〉 and
|2〉, they form an adequate basis set in which the ground state of the molecule |ψ〉 can be expanded.
So, you do not we are assuming that we do not need any other state to make the linear combination
make the expansion for |ψ〉. That means, this set of |1〉 and |2〉, this gives us an adequate basis state
basis set. This is our first assumption and the second assumption is that we assume |1〉 and |2〉 to be
orthonormal. That means, if we have a state 〈i| and |j〉, then the inner product between 〈i|j〉 them is
δij . This is the ortho-normality condition. So, for one and two we assume orthonormality condition.
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With this assumption, our work becomes simpler and that is the reason, we make this assumption.
Even without making this assumption, we can in principle solve the problem; but then, working it out
would be more cumbersome ok. (Refer Slide Time: 09:24)

Now, making these two assumptions; from assumption 1, we can write |ψ〉 = C1|1〉+C2|2〉 where C1

andC2 are coefficients to the basis states in general these are complex numbers. And from assumption
2, we can write C1 because of orthonormality, it can be represented as 〈1|ψ〉. Similarly, C2 = 〈2|ψ〉.
From 1 and the orthonormality condition, you can easily understand that this would be the case. Now,
we need to find C1, C2 and the energy eigenvalues of the molecule. So, the energy eigenvalues of
the molecule, we write as E. That let us start with the time-independent Schrodinger equation. If
the molecular Hamiltonian is small h, then h|ψ〉 = E|ψ〉 this is the time independent Schrodinger
equation for the molecule. And with the help of this expansion here, we can write that h(C1|1〉 +
C2|2〉) = E(C1|1〉 + C2|2〉), this is what we obtain. Now, if we want to solve this Schrodinger
equation, we project this equation onto states |1〉 and |2〉. What do we mean by doing that? Consider
this equation and take from the left side of bra state 〈1| and project this equation on to that and in the
next step of bra state 〈2| and project this equation on to that. So, we do this 〈1|h(C1|1〉 + C2|2〉) =
〈1|E(C1|1〉+C2|2〉) and for 〈2|, this is 〈2|h(C1|1〉+C2|2〉) = 〈2|E(C1|1〉+C2|2〉). This is what we
have. Now, if we have something like |h|j〉, we will denote this kind of a matrix element as hij . This
is our convention to follow. (Refer Slide Time: 14:18)

With this, we can write the equations that we have found earlier as E0C1. Where did we get E0 from?
We will see that later. Let me write this first E0C1+h12C2 = EC1 and h21C1+E0C2 = EC2. So, we
have used the orthonormality of the basis set to eliminate the other terms. So, this is all we have and
we have considered 〈1|h|1〉. This is h11 = 〈2|h|2〉 = E0. So, here h is the molecular Hamiltonian,
not the atomic Hamiltonian. So, this E0 6= ε and so, our h11 and h22, these quantities are called the
onsite matrix element. This operation is on one site, one hydrogen atom that is the reason, it is called
onsite matrix element and h12, h21, these are hopping matrix elements. Why these are called hopping
matrix elements? We will understand that later. So, this these equations that we have that may be
represented in a matrix form and to determine the nontrivial solution for C1 and C2. We will need the

secular determinant to be 0; that means, we will require
∣∣∣∣(E0 − E) h12

h21 (E0 − E)

∣∣∣∣ = 0. And that means,

we get a quadratic equation from this E2 − 2E0E + E0
2 − h12h21 = 0 and since the Hamiltonian is

a Hermitian operator, we must have h12 = h∗21. This is something we must have. Now, if we assume
that we have considered only real orbitals, real atomic orbitals in this situation that is like 1S orbitals,
then h12 becomes real and h21 also becomes real. So, h∗21 = h21 itself which is equal to h12 and let us
call that another real number β which would be handy for writing. So, the solution to this quadratic
equation here would be one solution, we are calling Eb = E0+β and the other solution Ea = E0−β.
This is the solution for the eigenvalues. (Refer Slide Time: 18:24)

How about the eigenstates? The normalized state vector corresponding to Eb would be given as
|ψb〉; b stands for bonding and a stands for antibonding. We will realize their meaning later on. So,
|ψb〉 = 1√

2
(|1〉+ |2〉) and the one corresponding to Ea that is |ψa〉, |ψa〉 = 1√

2
(|1〉 − |2〉).
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