
Solid State Physics
Lecture 13

Van der Waals attraction

Hello, so, far in this course we have discussed about the structure of Solid. The crystal structure the
basis the lattice and how the combination of basis and lattice makes a complete crystal in infinite
space. But, we did not consider what binds those atoms in the crystal together. So, here we will
discuss about that, what is the binding force of the atoms that makes a crystal. (Refer Slide Time:
00:53)

You are familiar with ionic bonds, covalent bonds, but now let us discuss something interesting. So, if
we consider inert gases, if we have very low temperature and high pressure, they can be formed into
solids. How? They do not have any ionic force between the atoms. They do not have any covalent
interaction as well, in case of inert gases the outermost shell is completely full. So, they are not
supposed to interact with each other in any way and if they do not interact, how do they form a solid
at all. So, they must interact. And, here we will discuss about different kind of interactions that binds
the solid together. Nuclei as we know repel each other and there are electrons around it, that electron
cloud also repels each other. Nuclei attract the electron cloud and the electron cloud also attracts the
nuclei. And, this must be the main form of binding in crystal, there is very little contribution from
magnetic forces. If at all they exist in a solid not every solid is magnetic, there are few solids that are
magnetic and the magnetic interaction plays a very tiny role. The gravitational interaction between
atoms have no role in crystal binding that can be purely neglected. Now, let us consider the case of
the crystal of inert gases. The inert gases form the simplest crystals, the distribution of electron is
similar to that of free atoms. So, they do not have any electron sharing or ionization or anything like
that. The crystals are very weakly bound just because the interaction must not be strong in that kind
of a situation. But, there is some kind of interaction. And, because of that weak binding it has very
low melting temperature and all the inert gas crystals are transparent insulating solids. The atoms
have very high ionization energies. And, the outermost electron shell are completely filled that must
be the case and we can see that, the atoms are packed together in the closest possible way. He, He4,
these have hcp structure and everything else have fcc structure. You have calculated packing fractions
and you now know that these are the closest possible binding. So, what holds these atoms the inert
gas atoms together? Let us discuss about Van der Waals interaction. So, what is it? What kind of
interaction it can be? If you consider two identical atoms of inert gas at the core of that atom there is
a nucleus and surrounding is an electron cloud. If you consider the example of Helium there is only
s-electrons. So, it is completely the electron distribution is completely spherically symmetric. And,
if this arrangement is there, then you have learned from electrostatics that a spherically symmetric
charge distribution, it is electric potential behaves as if the entire charge is located at the center of
sphere. That means, you can as far as electrostatics is concerned. You can consider that the nucleus
the positive charge is located at the center of the atom, the negative charge of that electron that is
also located at the center of the atom. So, there is no charge. And, if there is no charge from an
atom it cannot have any electric interaction, electrostatic interaction. Then what happens? Then,
there can still be dipolar interaction if these two charge centers do not overlap if, they are allowed
some fluctuations, some oscillation something like that. So, oscillating dipoles can give us some
understanding of this. Let us consider that kind of a situation. As a model let us consider two
identical linear harmonic oscillators and we will consider that, they are separated by a distance R,
capital R. So, I am drawing one atom, one dipole here. This is the positive charge center and this is
the negative charge center, another dipole here positive charge center, negative charge center. And,
let us assume that these are connected by a spring so, that we can use the spring constant in our
Hamiltonian. So, they are certainly not connected by spring, but we are just thinking that the force
between the positive and negative charge centers, they interact with each other, like a spring kind of a
potential. We consider the distance between the positive and negative charge centers here as x1, here
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it is x2, and the separation between them is given as capital R. So, how much is capital R? This much
this is capital R so, this is our first oscillator and this is our second oscillator that we have considered.
Now, each oscillator bears charges, that is ±e, +e here −e here, with separation x1 and x2. The
dipoles as oscillate along the x direction in one dimension we have considered for simplicity. Now, if
we consider that p1 and p2 are the momentum. So, let me write it here p1 is the momentum for this
oscillator, p2 is the momentum for this oscillator, and if C is the force constant corresponding to the
spring and we consider identical atoms. So, it is the same force constant similar kind of spring, same
force constant. We can write the Hamiltonian of the unperturbed system, that is there are two such
oscillating dipoles and they are not interacting between each other. Without any interaction, if we
try to write the Hamiltonian that we call the unperturbed Hamiltonian denoted as H0 can be written
as their mass is also identical. So, I am writing m for the mass 1
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this is also the spring potential from the other dipole. Now, each coupled oscillator is assumed to
have the frequency ω0. What is ω0? If, we shine light on these atoms individually the charge centers
would oscillate about each other as a result of the light. So, there may be different frequencies, we are
considering the strongest optical absorption line that is the resonance frequency for this atom. And,
that resonance frequency is omega naught. If that is the case; that means, that is the characteristic of
this spring. So, we can write that, the spring constant C = mω0

2. This is the resonance condition
for the strongest absorption line, optical absorption line for this atom. (Refer Slide Time: 10:46)

And, now if we consider coulomb interaction so, what allows us to consider any coulomb interaction?
If, we see that the charge positive charge center and negative charge center these are separated now
in this kind of a situation then, there would be coulomb interaction. And, the coulomb interaction
can the Hamiltonian the corresponding to coulomb interaction can be represented as H1 = e2

R
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R+x1−x2
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. So, let us go back to the picture. The positive terms are repulsive term; that

means, that is between the positive and positive charge center and the negative and negative charge
center. The negative terms are attractive terms between the positive and negative charge center here
and the negative and positive charge center here. Now, this Hamiltonian is written in CGS unit. In
SI unit it will have some change some dressing would be different, but the physics will remain the
same. And, we have already discussed that x1, the absolute value of |x1| and absolute value of |x2|,
that is the difference between the distance between two charge centers, this is much less than capital
R the inter atomic distance. This assumption is a very good assumption excellent assumption, this
will be valid for every kind of solid. And, within this assumption we can write H1

∼= −2e2x1x2 .
It will be a homework for you to show this, that within this assumption we can reduce H1 to this
approximate form. Now, once we have considered this approximate form, the total Hamiltonian with
the approximate form of H1, if we write H0 + H1 now and H1 in this approximate form. We can
diagonalize it and find the normal modes,where xs is the symmetric mode that can be represented as
1√
2
(x1 + x2). And, the anti-symmetric mode xa, it can be given as 1√

2
(x1 − x2). Showing this is a

homework for you, you are supposed to consider you are supposed to add this form of H1 with H0

from the previous page, and diagonalize that Hamiltonian. If you diagonalize that Hamiltonian you
can use Software’s like Mathematica MATLAB or whatever you wish, or you can do it analytically
also this is not a big Hamiltonian. You should get the symmetric normal mode, you should get this
form and for the anti-symmetric normal mode you should get this form. Now, if we solve for x1 and
x2 we can write down, x1 in terms of xs and xa, x1 = 1√

2
(xs + xa). Similarly, x2 = 1√

2
(xs − xa).

(Refer Slide Time: 15:57)

So, if we now write the symmetric and ant-symmetric momenta ps and pa; in terms of ps and pa we can
write p1 = 1√

2
(ps + pa) and p2 = 1√

2
(ps − pa). The total Hamiltonian after these transformations can

be represented using the normal mode coordinates and the normal mode momenta as H = [ 1
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2]. This is the total Hamiltonian in terms of normal mode

coordinates and normal mode momenta. Once, we have that the normal mode frequencies may be
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evaluated, the normal mode frequency in this case if we write that as ω can be written as

√
C± 2e2

R3

m
.

And, this can be represented as ω0[1 ± 1
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+ .........] more higher order terms. So,

what is omega naught here? ω0 as we have represented earlier is
√

C
m

square root of this. And, we
have obtained this expansion just by expanding the square root. Why did we do that? That will be
clear soon, here in this square root we cannot perform few operations that for which we will need this.
(Refer Slide Time: 19:51)

Now, let us consider the zero point energy for this coupled oscillating system. In case of classical
oscillators we have no zero point energy, but here these are quantum oscillators. So, it cannot have
absolute zero, energy it will have certain energy even at the lowest possibility. So, the lowest possible
energy is non zero in this case. And, how do we obtain the zero point energy? The zero point energy
for this system would be given as 1

2
h̄(ωs+ωa), this comes from the plus minus sign here and here. So,

this gives us the zero point energy of this coupled oscillator system because, the interaction, because
of this interaction that we have, the sum is less than the uncoupled value of zero point energy. If,
we did not have any coupling between the two oscillators, if we consider no coupling, then we have
the zero point energy for each oscillator given as 1

2
h̄ω0 and multiply it with 2, because there are two

oscillators, this will be the total zero point energy, here the zero point energy is less just because these
two oscillators are interacting. Now, if we consider the difference between the zero point energies, that
is ∆U that would be the cohesion, that would be the cohesive energy, that is given as 1

2
h̄(∆ωs+∆ωa).

In order to find out ∆ωs and ∆ωa, this expansion here this would be of enormous importance. Using
this expansion, we can write down the delta expression for ∆U = −h̄ω0
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and; that means,
we have 1

R6 kind of dependence and the rest are just a constant. So, it can be written as − A
R6 where

A is the positive constant. So, with a minus sign this is an attractive interaction you can clearly see
and this is attractive just because, this zero point energy of the coupled oscillator is less than the zero
point energy of the oscillator without considering any coupling. That is the reason that this difference
this energy that we have found here is attractive. And, it goes as this attractive energy goes as ∼ R−6,
this is the leading attractive term. Of course, if you take this expansion a bit further, you will get more
attractive terms, but their contributions would be much less than this term. This kind of interaction
is called the Van der Waals interaction. It also has other names like London interaction or simply
the dipole dipole interaction, note something interesting. If we had classical mechanics in our mind
we could not have derived any such interaction. Because, we derived this interaction by considering
the difference between the zero point energies, in case of interacting and non-interacting system. In
case of classical system there is no zero point energy and if there is no zero point energy there is no
difference as well. So, this interaction energy that is the Van der Waals interaction energy that we have
calculated now has purely quantum origin if there is no classical analog to this kind of interaction.
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