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Lecture 12

Atomic form Factor

(Refer Slide Time: 00:24)

Now, let us deliberate on the Atomic form Factor; let us see how we can understand anything better
of it. (Refer Slide Time: 00:33)

If we understand this that will sort of make our understanding of X-ray diffraction or any other wave
diffraction in a crystal sort of complete. So, the scattered radiation from a single atom takes into
account the interference effect within the atom. So, the form factor fj that we have considered earlier,
that we have defined earlier for jth atom can be written as dV. We have already written this earlier
nj(
−→r ) exp (−i

−→
G · −→r ). Now, this integral is extended over the electron concentration associated with

a single atom. If we consider that the angle between −→r and
−→
G , that is α; then

−→
G · −→r becomes−→

G−→r cosα. And let us assume that the electron distribution is spherically symmetric, although in case
of many orbitals it is not spherically symmetric; but if we assume it to be spherically symmetric, we
will not be pretty accurate, but the accuracy level that we will have would be sufficient for describing
or qualitatively understanding the diffraction pattern. Now, if we assume the electron distribution
to be spherically symmetric; then fj this can be written as 2π

∫
dr
−→
r2 , this is the volume element

in case of spherically symmetric charge distribution, it does not depend on any θorφ. Then we have
d(cosα)nj(

−→r exp (−i
−→
G−→r cos(α)). And this can be written as 2π

∫
dr
−→
r2nj(

−→r ) exp (i
−→
G−→r )−exp (−i

−→
G−→r )

i
−→
G−→r

.
So, this we obtain after integrating over d(cosα) with the range [−1to1] that is the full range of cos(α)
that we have. We have integrated over d(cosα) using this range and got this quantity now. (Refer
Slide Time: 05:01)

Once we have this, then we can write the atomic form factor as fj can be written a 4π
∫
dG n(−→r )

−→
r2 =

sin
−→
G−→r
−→
G−→r

. Once we have obtained this, if the same total electron density; if we assume it to be concen-
trated at the at −→r = 0, that is at the nucleus which is never true, but we can consider that the electron
density is maximum near the nucleus, it tends to the nucleus site. If we consider that kind of a sit-
uation, which could be considered in a crystal where most of the space is empty; the electrons are
closely bound close to the nucleus and very few roam around and participate in bonding. So, this
assumption would also not be very wrong, although in the discussion of electronic states, electron the
bonds between two atoms this kind of description will not work at all; but as long as we are using
X-ray diffraction for determining the structure, this would still work in this limited context. (Refer
Slide Time: 06:48)

So, if we assume something like that, then we will have limr→0
sin
−→
G−→r
−→
G−→r

within this assumption and
that will give us 1. So, we will have fj = 4π

∫
, ok. So, this quantity is actually proportional to

this for each electron this is the situation, 4πdr nj(
−→r )
−→
r2 ; this quantity would become the number

of electrons, simply from each electron we will have atom contribution to atomic form factor equals
1 and the total atomic form factor would become the atomic number, Z is the atomic number. So,
what did we learn from this discussion so far? We have learned that there are, there is a diffraction
condition that we can recast in many different forms. We learnt all the various statements of the
diffraction condition, we learnt the primitive translation vector in the reciprocal lattice; we developed
the concept of Brillouin zone and the scattering amplitude, structure factor and atomic form factor,
these are the things that we have developed a concept for.
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