
Solid State Physics
Lecture 11

Fourier Analysis of the Basis and Structure Factor

(Refer Slide Time: 00:24)

After doing this part, we are left with the Fourier Analysis of the Basis. So, our X-ray diffraction or
any other wave diffraction that we can consider is going to depend on the electron density that we
have in the system. And the electron density is going to depend on the basis of basis that is the group
of atoms that we consider at associated with each lattice point, that is going to determine the intensity
of the diffracted pattern. So, it is important to perform a Fourier analysis of the basis. (Refer Slide
Time: 01:13)

So, when the diffraction condition is given as ∆
−→
k =

−→
G ; when this condition is satisfied, we get

some intensity in the diffraction pattern. When this condition is satisfied the scattering amplitude
for N cells capital N number of cells. Let us consider that is all we have in the system or that is
where we are shining the wave and considering the diffraction. This can be written as, we have this
notation F for scattering amplitude and it is a function of

−→
G now. So, we are indexing it with F−→

G
is

given as N
∫
cell

dV , the electron density function as the electron density as a function of the position
vector n(−→r )and e−i(

−→
G ·−→r ). We have worked this out earlier; we are just using it here. This one can

be written as NS−→
G

, where this S−→
G

this quantity is called the structure factor, structure factor of the
diffraction intensity. It is useful to write the local electron concentration n(−→r ) as the superposition
of electron concentration functions nj associated with each atom j. That means, what are we going
to do? Consider −→rj that is the vector at the center of the jth atom. If we have that, then we can
construct a quantity n(−→r −−→rj ). This quantity defines the contribution of the jth atom to the electron
concentration at point r. So, at a given point r, there may be contributions from different atoms in the
electron density. So, this quantity here would give us the contribution of jth atom at the position −→r .
So, the total electron concentration at −→r due to all atoms in the unit cell that can be given as n(−→r )
this function it would. If we Σj , s is the number of atoms in the basis Σs

j=1
−→nj(−→r −−→rj ). If we perform

this, where s is as I said the number of atoms in the basis, ok. So, s is the number of atoms in the basis
and if we Σs

j=1, we will obtain n(−→r ). Now, the structure factor S−→
G

may be written as
∫
s number of

atoms in the unit cell. So, S−→
G

this quantity structure factor is Σs
j

∫
dV−→nj(−→r − −→rj )e−i(

−→
G ·−→r ). What

are we going to do here? We are going to put (−→r − −→rj ) kind of terms here and that we will have
to compensate somewhere outside. So, we can write this quantity as Σje

−i(
−→
G ·−→rj ). If we do this, then

inside here we will have (−→r − −→rj ). So, we write dV nj , it is a function of ρ now; we are defining
(−→r − −→rj ) = ρ,e−i(

−→
G ·ρ). So, ρ is nothing, but (−→r − −→rj ), we have made this substitution here. (Refer

Slide Time: 07:21)

After doing this, now we can define the atomic form factor fj; that is the contribution from each
atom as for ith atom, it is

∫
dV nj(

−→ρ ) exp (−i
−→
G · −→ρ ). So, this integral part is called the atomic

form factor and the part outside integral is that of summing over the contribution from every atom.
So, this one has to be integrated over all space. And if nj is an atomic property, then the atomic
form factor fi is also an atomic property. But this assumption that nj would be an atomic property
is not really confirmed, because in a solid there would be overlap of electrons. So, this assumption
has some restrictions although by and large it is valid. But, so when we consider X-ray diffraction
it is the majority of the electrons that are going to matter. So, those that participate in bonding or
minority, those are associated with nuclei that is majority. So, this one, this assumption that we made
is not true; but still it would be useful. With that understanding, we can combine the above equations
that we have constructed so far to obtain the structure factor for the basis S−→

G
with the help of the

previous equations; we can write that it is Σjfj , ok. Let it let us write it fj , because we have function
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of j here, not i. So, it is Σjfj exp (−i
−→
G · −→rj ). Now, for an atom j, we can write its position vector

−→rj = xj
−→a1 + yj

−→a2 + zj
−→a3 ; xj, yj, zj . These have values ranging from 0 to 1 as we have discussed

earlier. With this we have
−→
G · −→rj , this quantity going to (v1

−→
b1 + v2

−→
b2 + v3

−→
b3 ) · (xj−→a1 + yj

−→a2 + zj
−→a3).

By putting the forms of
−→
b1 ,
−→
b2and

−→
b3 that we have obtained for different kind of lattices; we can find

exactly what this is going to be. Well, we have the relationship between
−→
b1 , the dot product of

−→
b1

and −→a1 ,
−→
b1 · −→a2 and all that; it is 2πδij ,

−→
bi · −→aj = 2πδij . With that we can already write that this

dot product is going to give us 2π(v1
−→xj + v2

−→yj + v3
−→zj ); the other components of the product will

vanish. And with this we can write S−→
G

equals. So, S−→
G

is now a function of these indices v1, v2, v3;
this becomes Σjfj exp [−i2π(v1

−→xj + v2
−→yj + v3

−→zj )], this is what we have for the structure factor. The
structure factor does not need to be a real number it can be a complex number in general. When
we take the diffraction intensity, it would be square of the structure factor, so that would become a
real number anyway. So, structure factor being complex does not require any physical quantity to be
complex; amplitude is not really a physical quantity, it is the intensity that is the physical quantity. So,
the physical quantity would still be real. Now, let us consider an example of the bcc lattice, structure
factor for the bcc lattice we are going to find out. (Refer Slide Time: 13:033)

The bcc lattice can be referred to with a cubic lattice, that is cubic the axis vectors corresponding to
a simple cubic lattice and we can have identical atoms located at the origin and another point that
is the body center, the coordinate (1

2
, 1
2
, 1
2
). With these two identical atoms at these two coordinates

using the simple cubic translation vectors, primitive translation vectors, we can represent a bcc lattice
that you have already worked out in one of the homework’s. So, we can write S(v1v2v3) = f that is
the atomic form factor times [1 + exp [−iπ(v1 + v2 + v3)]]. So, where did we get this 1? If we put
(v1 + v2 + v3) sorry (−→xj ,−→yj ,−→zj ) everything equals 0; we will get exp 0 that is 1. And for the other
thing, exp−i2π(v1

−→xj + v2
−→yj + v3

−→zj ) that is going to give us this quantity here. So, with this the f
is the atomic form factor, so that we are yet to calculate. But we can already see that if this quantity,
exponential is the value is minus 1; then S will be 0. So, when would be with it be minus 1? If we
have (v1 +v2 +v3), if this quantity is an odd integer and S would be 2f. If this becomes (v1 +v2 +v3)
becomes even integer; then this quantity exponential of this would be 1 and 1 plus 1 we will have 2
from this curly bracket. So, this condition is (v1 + v2 + v3)is even integer for S being 2f. So, obvious
homework here for you would be, to find the structure factor corresponding to an FCC lattice, ok.
Now, let us deliberate on the atomic form factor.
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