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So, hello we are back and as promised we will start talking about Mass conservation

equation; the equation of continuity right here. And so, before doing this; I want to define a

quantity called mass flux or for that matter the flux of any quantity ok. It is defined like here

as I have written here; it is amount of mass per unit area per unit time flowing out of or into a

surface. 
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In order to appreciate this envisage a surface like this you know a surface like this; it might be

open or closed that at, for the time being it does not really matter. And so you have you know

mass either flowing out or flowing in ok. The units of mass are gram; if you adopt cgs units; I

am most of the time you know astrophysicists work in cgs. So, so I am used to cgs, but not

necessarily. I mean if you are more comfortable with kilograms that is alright.

So, the unit of mass per say is grams, but what we are talking about is the mass flux ok. So,

this would be grams per centimeter square per second. So, this would be the mass flux and

this makes sense only if we consider a surface because you know the centimeter squared here;

what is it about? It is you know per it is a mass; per unit area you know per unit cross

sectional area say some sort of a cross sectional area here ok; that is flowing out or flowing in

per second of course, ok.



So, this is the definition of mass flux and we will come back to this kind of a definition over

and over again. Turns out that one can define something called the momentum flux as well;

the flux of any quantity for that matter which is momentum whatever the units of the though;

that is essentially grams centimeter per second because this is MV, momentum per unit area

per unit time; this is momentum flux ok.

So, this concept of flux will keep coming back over and over again during our discussion. So,

I thought I would you know take the moment to explain or to you know introduce what this is

and we will do so, once again also as a need arises right. So, getting back; so we have defined

mass flux now and so the mass flux is simply rho u where rho is the matter density and u is

the flow velocity. If you look at the units of rho you know rho is the units of rho are grams per

centimeter cubed and the units of u are centimeter per second right. So, you multiply these

two together and you get; rho u something like grams per centimeter squared per second right.
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Just to make it a little clearer; mass flux is rho u, this is grams per centimeter cube and this is

centimeter per second. And therefore, multiplied together the units of this are grams per

centimeter squared per second ok; so, that is how it goes right.



(Refer Slide Time: 04:35)

So, that is the definition of mass flux and why is that useful? Consider this statement; the

mass contained in a volume which is the integral of rho d, where d V is an elemental volume.

It can change only due to mass flux through the bounding surface because mass cannot be

created or destroyed within the volume.
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Yeah, in other words before looking at this equation; let us go back and do a little sketch. You

see suppose you have some kind of a bounding surface like this and the whole point is you

cannot magically create or destroy mass inside here yeah. So, if there is a change in the mass

flux inside here that is that can either increase or decrease that can only be because of mass

flux flowing out or flowing in; mass flux ok; either flowing out or flowing in like this. 

There is a only way the matter density inside this volume can change right and so what is the

total mass contain inside this volume? Total mass contained is simply rho; the mass density

times d V integrated over this whole volume right. So, that is what this says here that is what

this says.

And so the rate of change of mass flux of the total mass right; the rate of the time rate of

change of the total mass and this is the total mass this integral is the total mass is essentially



the negative of the mass flux which is rho u; integrated over the surface area. Which surface

area? Well, the bounding surface ok; the first thing to notice is that the dimensions match up,

I urge you to; I urge you to check that out, you just have a per second here.

So, this is grams per second and the dimensions of this are grams per centimeter square per

second and the dimensions of this; of the surface area is essentially centimeter squared. So,

you have you know; this was rho u dot d s ok, where d s is just this any small little surface

element whose area vector is pointing outwards. So, this is by definition and this is of course,

centimeter square.

So, this integral has units of grams per second and that is exactly what the units are here; this

is in grams per second right. So, it is an extremely simple statement to make; mass cannot be

cannot be created or destroyed inside this volume. 

Therefore, the only way the mass density; the total mass inside this volume can change is

because of mass flux because something is carrying matter away or inside this volume

through the surface which is bounding this volume; that is what this equation is telling you;

that is what this entire equation is telling you ok.



(Refer Slide Time: 08:37)

So, this is the same thing that we that we wrote here; it is exactly the same thing, no

difference. And now we do a little bit of vector calculus; we apply Gauss’s law to the right

hand side to get the following. In other words, we convert the surface integral into a volume

integral.
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So, in doing; so we this becomes this; all we are saying is that is all we are saying and this is;

so, we apply this here, here to get something like this. Why did we do that? That is because

you know you have a volume integral on the left side and a surface integral on the right hand

side, little awkward. So, you convert both of them into a volume integral and so you have a d

V and it is obvious right, it is much more convenient.

So, you just take it to the left hand side and you write it like this and we are almost there. And

since this is true for; since this statement here this entire statement is true for any arbitrary

volume, no matter how small ok. And this is very very important since this is true for an

arbitrary volume, I should probably have written arbitrarily small volume ok; you can take

this d V to be arbitrarily small in which case the integral is irrelevant right.



So, we can say that the integrand itself is equal to 0; notice this is nothing but the integrand

here and that is it. This is the statement of mass conservation this is the equation of continuity

and you might be familiar with this from electrodynamics as well. It is exactly the same,

while doing electrodynamics; this would be rho would represent charge density; here we are

talking mass density.

So, that is all this is the equation of continuity, what is it really saying? It saying that mass

cannot be created or destroyed, the mass contained in the volume can change only due to

mass flux through the bounding surface; mass flux through this bounding surface right.

So, yeah this one; I am sorry I meant this figure. So, the only way the mass density or the total

amount of mass inside here can change is because of mass flux through this bounding surface

and that is what; at the end of the day yeah. So, that is what this equation is telling us and this

is called the equation of continuity.

So, there you there you have it; we have you know derived from intuitive considerations, the

continuity equation. And this is what is called the conservative form of the continuity

equation ok; what you mean by that? I mean this is just a word such you know, but I will; so,

remember this word conservative form. And really what this means? In general, the

conservative form of any quantity goes as in this case it is a conservative form of the mass

continuity equation.

In general, the conservative form of any quantity goes as the partial time derivative of the

quantity; in this case mass density plus the divergence of the flux of that quantity is equal to

0. So, the divergence of the mass flux; remember, we said we spend a little bit of time in

showing how rho u; this quantity is the mass flux right.

So, this is what is called the conservative form of the mass conservation equation and so, it

takes the following form. The partial time derivative of mass density plus the divergence of

the flux of mass is equal to 0 ok. We will have you know an equation to return to this



particular conservative form for the momentum continuity equation as well, it is a little more

complicated, but the concept is the same right.

So, there you have it; that is the equation of continuity, that is the equation of mass

conservation and we are done with the first of the conservation equations that we promised

we would look into.
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So, let us go ahead yeah ok.
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So, before that recall in our study of kinematics; we had two kinds of derivatives we had two

kinds of; we had the Eulerian description which is the description of the fluid flow as seen by

a lab frame observer. An observer, who is standing outside of the fluid flow and we had the

Lagrangian description which is in some sense the fluid parcel frame; so to speak.

In other words, it is the flow of the fluid, as seen by an observer sitting on top of a fluid parcel

and the time derivative while in this kind of description was mostly exclusively in fact,

denoted by d over d t; whereas, in the Lagrangian description the time derivative was denoted

with these regular straight d’s right.

You might want a wonder why I am writing a partial here; why am I writing; why I am

writing a total here? I mean the real reason is that; I mean you know in the Eulerian

description things can change due to changes in time as well as changes in position. So, the



flow field is a function both of time and position, hence the partial derivative. Here in the

Lagrangian description, you know you are sitting on top of the fluid parcel; there is only one

variable so to speak ok.

So, think about that and we also made; made the connection between the two kinds of

derivatives, the connection between this and we had like that; you recall we make this

connection right. So, this is how the time derivative in the Lagrangian frame and the time

derivative in the Eulerian frame are related and that is exactly what we.

So, this entire thing is written in the Eulerian frame; in other words, the frame; the lab frame

in which the observer is standing outside of the fluid flow and here she is watching the fluid

flow by. And you can relate it using relation to the Lagrangian way of looking at things; this

and this are both the mass continuity equation, except here the derivative is a Lagrangian kind

of derivative ok.

So, this and this are exactly the same and I would urge you to show this; to explicitly show

how this follows from that or vice versa ok; this is a useful exercise. Sometimes, it is more

convenient to adopt the Lagrangian point of view, sometimes it is more convenient to adopt

the Eulerian point of view; it is important to be familiar with both kinds right.

So, if you divide this entire equation by rho; on the right hand side you have 0, so that makes

no difference; if you divide this entire equation by rho, you get this.
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This is the same equation that we have written earlier; the mass continuity equation right, in

the Lagrangian frame as seen by an observer who is sitting on top of a fluid parcel. And one

frequently encounters situation where to a fair approximation; the first term is negligible, in

other words this is often negligible ok.
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In which case, in other words this is what I mean; this is the 1 over rho d; rho d t is

approximately equal to 0 in which case the; so and you can see this. So, suppose this was non

zero right; suppose this one over was equal to some constant k right. So, the solution to this

equation would be some sort of rho equals rho naught; e raised to k t right.

So, in other words the density is changing, as a function of time right. Suppose, that is not so,

suppose the density is not changing as a function of time right. In other words the fluid is not

squishy, you cannot change its density; the fluid is kind of it is what is called incompressible.

This is the condition for; this is the condition for incompressibility that is what this equation

is telling you ok.



 If that is so, if the first term is if this term is 0, then automatically follows that the mass

continuity tells you that the divergence of u is 0.
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Many times, this is simply taken to be the condition; this is simply taken to be the condition

for incompressibility ok. So, this thing; this divergence of u is 0. If the flow field is such that

its divergence is 0, you immediately conclude that the flow is incompressible; for this reason

that we just discussed. 

And this is often now it turns out that there is these are not absolute statement; it is never the

case that a fluid is definitely compressible, definitely incompressible; it all depends upon how

fast the fluid is flowing.



And in physics, you never make this statement in an absolute sense; you never say how fast;

well how fast with respect to what? With respect to the speed of light or with respect to some

of the speed. Here, we are talking non relativistic dynamics; so the speed of light is does not

enter the picture at all; everything all flow speeds are much much smaller than the speed of

light.

Turns out that if the flow speed is much much lesser than the sound speed which we have not

introduced yet. We will introduce this when we start talking about compressibility. If the flow

speeds are much smaller than the sound speed, then the fluid can; any fluid can be regarded to

be incompressible to a very good degree of approximation. Now, I simply I will simply make

the statement of the for now and we will justify it later on when we when we start discussing

compressibility, but this is something to be kept in mind right.

So, what we have done? For the time being is we have in a rather intuitive manner derived the

equation of continuity or that of mass conservation. We have essentially derived two different

guises of it; the Eulerian form of the continuity equation and the Lagrangian form of the

continuity equation. And we have used the Lagrangian form of the continuity equation to

derive what is called the incompressibility condition.

Now, this is small variant to this; this is small variant to compressibility or incompressibility

and there is little bit of an advanced topic. But I figured, I would mention this; it is not totally

central to the basic flow of what we are talking about, but let us do it anyway yeah.
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So, there is something called a Boussinesq approximation which is very closely related to

incompressibility. You recall when we talk about compressibility or incompressibility; we

were really talking about this. This is really what incompressibility was all about, in other

words the flow not being squishy; this is really what it was about. But turns out that the you

can; in other words when you can neglect density variations, you say that the flow is

incompressible.

There is a related approximation called the Boussinesq approximation where density

variations in the fluid can be neglected everywhere except where by everywhere; I mean in all

terms of the equation except where the density is multiplied by the acceleration due to gravity

ok.



So, this is a little bit of a weaker condition than incompressible than strict incompressibility

ah. So, density variations can be in all terms of the equation whichever equation you are

considering can be neglected. So, it is pretty much incompressible except where the density is

multiplied by g, you do not neglect density variations ok.
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For instance, consider a gravitationally vertically a vertically stratified atmosphere which is

vertically stratified due to gravitation; an example for instance would be you know a

container, a fluid where the fluid is a mixture of various densities ok; oil, water various other

things ok.

So, what will naturally happen; simply because of gravity, there will be a stratification and

you will have the densest material at the bottom; this would be the densest material yeah. And

the up next layer would be relatively less dense and the next layer would be even less dense



like that. So, this would be an example of so the density would increase like this. So, this

would be an example of a gravitational this right.

So, if that is so then it turns out that and this I will simply state without proof, for the time

being. As and when we start discussing isothermal flows, I would like you to show this fact

which is that; the scale height of such an atmosphere, in other words the scale height is

essentially the height over which the density varies by a factor of e ok.

So, suppose the density is varying as e raised to some k; z then the scale height would be

something like 1 over k ok, that is what the scale height is. So, and we call that L and that is

equal to c s squared over g where c s is the sound speed. I simply state this right now, but I

want you to keep this keep this in mind and derive this when we come to you know

discussing isothermal flow.

Now, the thing is this Boussinesq approximation which is a slightly weaker form of

incompressibility because density variations can be neglected in all terms of the equation

except that term where the density is multiplied by g ok. Turns out that if this approximation

is to evaluate the scale of the flow has to be much much less than a density stress

stratification height.

You know let say if the density stratification height was something like; how about this? Say

about L yeah and this L is essentially is essentially this quantity. So, if that was the case; then

you want the scale of the flow, the whatever flow is taking place should be much less than L

this flow should be confined to a vertical dimension that is much smaller than l. So, in under

such circumstances the Boussinesq approximation is valid ok.
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Turns out after having said all this, you will be a little disappointed when I make the

statement the Boussinesq approximation often just reduces to divergence of u equals 0 which

was just what we said earlier; it was just what we said here this is the incompressibility

condition anyway right. So, the Boussinesq approximation often just reduces to a divergence

of u equals 0, but not always.
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So, that is about mass conservation and let us now march right ahead into momentum

conservation.


