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Magnetohydrodynamics [MHD]: Shocks in MHD - Shock jump conditions

So, having conceptually enumerated the way in which the conservation relations for magneto

hydrodynamics from which we will derive the jump conditions of course, differ from the

hydrodynamic case let us now proceed to write them down right. 

So, but before that I think it is useful to sort of very briefly review how we did things in

hydrodynamics ok. The very same thing just so, we can move rapidly when we come to

higher magnetohydrodynamics ok.
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So, consider the mass conservation right, mass conservation once again mass conservation

ok. What we really are saying is that the rho u is constant right, but what do you really mean I

mean how did we this actually come about right? 

So, because the mass conservation equation is essentially d rho dt plus divergence of rho u is

equal to 0 and if we consider a steady state situation where this goes away and so, we are only

left with the divergence of rho u equals 0 ok.

And applying the divergence theorem the volume integral of this can be the volume integral

of the divergence of rho u becomes a surface integral of you know this becomes a surface

integral of right. So, the volume integral of this becomes equal to the surface integral right.

Now, the question is how do you choose the surface cleverly.

The thing is here is here is the shock or some kind of discontinuity and here is a region 1 and

here is a region 2 and let us consider a little cylinder like this. So, which is the dS you are

talking about? This would be the dS ok. So, therefore, this thing this dS dot rho u this one

being equal to 0. 

So, you see the volume integral of the divergence of rho u equals 0, means that by the

divergence theorem the surface integral of this is equal to 0 implies if you consider just this

little thing with the length of the cylinder being shrunk so much that you know this phase of

the cylinder and this phase is of the cylinder are arbitrarily close to the shock front ok.

So, this essentially becomes minus rho 1 U 1 dS plus rho 2 U 2 dS. Why the minus here?

Because the dS here is facing that way and the dS here is facing the other way, right. This is

equal to 0 ok, which gives you rho 1 U 1 equal’s rho 2 U 2. This is how the mass

conservation came about if you remember.

So, the key is this diagram. This little diagram where you have you know a little cylinder with

the dS you know like this and the length of the cylinder being a shrunk to an arbitrarily small

thickness.
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Similarly, momentum conservation which is very important because you know that is where

magnetohydro dynamics starts becoming significantly different from hydrodynamics. 



(Refer Slide Time: 04:16)

And the momentum conservation equation becomes now, we are still doing hydrodynamics is

essentially dot rho, where this is the outer product plus p I equals 0. This is just the dyadic

tensor with a simply a tensor with the diagonal elements being 1 and the rest of the elements

being 0. 

And this is the outer product, the outer product of these two velocities ok, not the inner

product the outer product ok. So, now, you know you evaluate this over the same cylinder

over this over this same cylinder and you carry out this integral.

And this gives you the momentum conservation equation that we are we were familiar with. 1

U 1 squared plus p 1 is equal to rho 2 U 2 squared plus p 2 right. So, this is how we got the

you know the momentum and flux conservation equations. Now in MHD though, now we are

talking in MHD right.



So, in MHD the as we said the mass conservation equation is the same no need to repeat it

now.

(Refer Slide Time: 05:38)

So, in magneto hydrodynamics momentum conservation as we said momentum conservation

is pretty much the same except for the addition of the Lorentz force which now manifested.

So, the J cross B manifests itself in the form of magnetic tension and pressure ok; magnetic

tension along the magnetic field and magnetic pressure perpendicular to the magnetic field. 

So, the momentum conservation equation steady; state steady state as always. In other words

that d over d t partial d partial t goes to 0 and it becomes dS dot this chunk is the same as

before and this chunk is also the same as before except now you add magnetic pressure right

and this is the dyadic.

So, this is the same now, you added magnetic pressure, but there is one more thing ok. This is

a magnetic pressure in addition to that you have the magnetic tension with a negative sign

here where this is an outer product ok. This is equal to 0 ok. And just like you got this from



this the jump condition now becomes from this the jump condition now becomes rho U times

U. 

I am writing this down without too much derivation , but I i i am hoping that you know the

details you will work out the algebra it is not that hard ok. Um The algebra is not that hard

and then you will be able to work it out yourself. It follows directly from here.

B squared over 8 pi in the n hat direction right minus B dot n hat, where n hat is the wave

propagation direction of course, or the shock propagation direction I must say. So, as you can

see it is a little more complicated, it is a little more. So, but you can see the same things. 

You can see the rho U squared, you can see the p except now you have got a B squared over 8

pi and you have got this magnetic tension. These are the two pieces that are new in the

momentum conservation for MHD ok.
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The divergence constraint again we will draw this thing once again ok. So, the divergence

constraint in so, and we will draw this little cylinder again. This guy the dS is this way and

the dS here is this way and the length of the cylinder can be you know arbitrarily shortened

right. So, the divergence constraint in delta B equals 0 can be rewritten using the divergence

theorem as dS dot B equals 0. You agree? This is the same as this right.

Now, we perform this integral over the cylinder right. So, essentially what happens is you

have from 1 and 2 so, you have over one B dot n right dS where n is the outward normal right

plus B dot n dS. So, this is over you know and this is over the phase in medium 1 or on side 1

and this is over the phase on side 2 . 

This is equal to 0 which gives you which is which essentially tells you that this is the jump

can or rather. This and X is of course, the outward the direction of propagation of the shock

like that. So, the difference in B X on the two sides of the shocks has to be equal to 0 ok. 

So, this is what comes from the divergence constraint this is one; so, normal component of B

remains constant across a shock . This is the you know one of the main things right.
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So, next one is conservation of flux conservation magnetic flux conservation. How does that

work out? Well, in steady state Faradays law simply tells you and we will soon write E in

terms of B and you know that . So, this is Faradays law in steady state right.

And Ohms law you know gives you I would put this in quotes. We have seen this earlier how

to relate the electric field to the magnetic field, we have seen this earlier in terms of. So, E

plus we have seen this earlier right. So, now, what we do is we integrate this over a thin strip

including the shock just like this just like this ok.

So, what we are saying is that is a component of E tangential to the shock this guy must be

continuous that is what it boils down to. And so, integrating after integrating over this kind of

a thin cylinder you will get cross. This is the jump condition that arises from flux

conservation ok. 



In other words the this quantity n hat cross U cross B which is you know this the difference

on the two sides of the shock has to be equal to 0. So, this is the new constraint that arises

from flux conservation.
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Mass conservation is the same and conservation of energy. We will simply write this down.

We will not bother about energy conservation. The last one gives you it is a little long, but it

is worth writing it down and so. As such it is no its not nothing terribly different its yeah. So,

rho times this is the same internal energy that we have written down earlier. 

This is the same kinetic energy density that we had also written down earlier the additional

chunk is the magnetic energy density right here. That is the additional chunk plus again you

had this earlier and this is the additional piece minus because of the magnetic tension you

have one more one more slightly complicated looking thing and this way its like that over 4

pi. 



And you the difference in this on the two sides of the shock has to be equal to 0 that is the

energy conservation energy jump conditions really. So, this completes it really. So, you had

the mass conservation, you had the divergence constraint, you had the momentum

conservation which was this and you had the divergence constraint like we have said before.

You had flux conservation and you have energy conservation. 

So, this is pretty much it. Now, what about this right? How are we going to this? This all

looks a little forbidding and how does one proceed right. The way one proceeds is by doing

the following. 
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You first of all what you do is you n is the shock propagation direction of course and the

angle between n and the magnetic field is we define as theta ok, right. So, theta equals 0 is

what we call a parallel shock ok. 



Theta equals pi over 2 is what we normally would call a perpendicular shock ok. And of

course, in between it is a theta less than pi over 2 to greater than 0 is the more complicated

case of a oblique shock. We will not bother too much about this oblique shock ok.

In addition to shocks we know that there are other kinds of discontinuities. We had we had

you know encountered those in hydrodynamics as well. We had something called a contact

discontinuity which involved a jump only in density not in a velocity or a pressure ok. So,

that was a contact discontinuity and that appears in magnetohydrodynamics as well. 

And then you have two other kinds of discontinuities in magneto hydrodynamics which are

called the tangential discontinuity and a rotational discontinuity. We will sort of talk about

this, but if time permits, but let us first enumerate the difference between a parallel shock and

a perpendicular shock and essentially what these are really ok. 

So, let us talk about parallel shocks first. So, this is how one. So, essentially this U dot and

these guys this is how you know things simplify ok. These are the two extremes and the angle

between n and beta is taken to be theta and if that is equal to 0, it is called a parallel shock if

that is equal to pi over 2 it is called a perpendicular shock.
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So, let us now discuss parallel shocks separately ok. In this case U 1 and B one both are

parallel to n hat right and so, in the simplest case where B 1 is equal to B 2 on the two sides

the magnetic fields are the same ok. If the magnetic field is parallel to the shock velocity and

is constant in front of the shock as well as behind the shock then this happens and then this

becomes same as a hydrodynamic shock. So, this is comforting ok.

The everything that we have done for hydrodynamic shocks remains valid here too ok. The

other possibility other possibility is a switch on shock in which we will not bother too much

about this. A switch on shock where B 1 can be at least the magnitude of B 1 B 2 sorry B 2

can be greater than the magnitude of B 1 ok.

And in this case some of the flow energy is indeed converted into magnetic energy ok. The

only thing is the normal component of B is conserved. In other words this B dot n this is

conserved, whereas, the tangential component is not. In this case the tangential components



are the same and. So, in one particular case the parallel shock is the same as a hydrodynamic

shock ok.
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So, now let us now discuss perpendicular shocks, where what this means is theta equals pi

over 2 ok. And so, essentially what this would mean is that if this is a shock if you know this

is the shock and so, on one side you would have U 1 rho 1 and everything and what the

perpendicular essentially means is that the B 1 is like so, and the B 2 is like. So, that is what it

means.

So, the magnetic field is perpendicular to the shock normal ok. The shock normal is like this

right. So, it is perpendicular to the shock normal, this is what it means. So, in this case the

flow energy the main thing about perpendicular shocks is that the flow energy which is the

which is essentially the kinetic energy associated the rho U squared so to speak. 



The flow energy is converted into magnetic energy and heat while heat if there is a means of

viscous dissipation of course, that needs to be kept in mind ok. But, the main thing is there is

a there is a chance for flow energy to be converted into magnetic energy.

Whereas, that possibility did not exist with parallel shocks because especially if B 1 is equal

to B 2 there its it reduces to the to being the same as a hydrodynamic shock ok. So, that is that

is the one thing.
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The other thing of course, is that the shock speed for theta equals pi over 2, the shock speed is

shock speed exceeds should be greater than the fast magnetosonic speed ok, which is in

particular the well the fast magnetosonic speed also has a theta in it. So, what I really mean by

that is V A squared plus C S squared one half that is what I really mean by this ok.

Now, the so, that is the one thing. The other thing is that the in fast shocks the magnetic field

is constant in direction and increases in magnitude by the same ratio as a density. So, you see

here the magnetic field does not change direction. You know it is constant in direction except



you know the density ratio increases across the shock, the magnetic field also increases in the

same ratio ok.

And perpendicular shocks are essentially these kinds of shocks are essentially fast mode

shocks, slow mode shocks and that is obvious from this statement. The shock speed has to

exceed the fast mode speed and so, these are perpendicular shocks essentially ok. No cannot

be it cannot be slow mode shocks. 

In other words if the shocks propagation speed is greater than the slow mode speed and you

insist that I want a perpendicular shock; in other words I want a shock that looks like this that

is not possible ok. So, this is another small nugget to be kept in mind and oblique shocks are

of course, you know a little more complicated and we will not bother with it too much ok.

(Refer Slide Time: 23:41)

Now, let us very briefly look at the slight difference between fast mode and slow mode

shocks. So, suppose this is a fast mode shock. The main thing about a fast mode shock is that

if this was B 1 on one side, the B 2 looks like this; it is refracted away from the shock normal.



Whereas if it is a slow mode shock, it is the opposite. If it is a slow mode shock if this was

the B 1, it is like that this would be a slow mode shock ok.
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So, fast mode shocks F Fms, fast mode shocks they increase the tangential component of B

and the magnetic field is refracted away from the shock normal as shown here and the total

magnetic field also increases. Total B increases for fast mode shocks, ok. 

For slow mode shocks on the other hand for slow mode shocks ok, they decrease the

tangential component of B and the magnetic field is refracted towards the shock normal as so,

the shock normal will be either this way or that way. At any rate that would be the shock

normal. So, the magnetic field is refracted towards the shock normal as you can see here as I

sketched here and the total B the total magnetic field decreases.

So, this way the fast mode and slow mode shocks are kind of opposites of each other. And of

course, you can have a fast mode shock when the speed of the shock exceeds the fast mode



speed the C S squared plus V A V A squared and you can have a slow mode shock when the

shock speed exceeds the slow mode speed; obviously, right. 

So, we will not bother too much because this is to expand these things because it is not our

intention to go into the gory details of magnetohydro dynamic shocks right. I just wanted to

give you a brief sketch of how the fact that you have three extra characteristic speeds, how it

you know it results in different kinds of shocks.

And the fact that you are now dealing with magnetohydro dynamics instead of instead of

hydrodynamics how it affects the jump conditions. The jump conditions are clearly different

slightly different, but nonetheless in different in very important ways from the hydrodynamic

jump conditions right. 

So, as you can see the introduction of a magnetic field essentially disturbs the symmetry ok,

disturbs the isotropicity I would say. It introduces a preferred direction and so, whether or not

the shock is propagating perpendicular or parallel to the magnetic field it makes a big

difference and. So, it results in two different kinds of shocks. So, or two different well the

characteristics are quite different. 

And so, I hope I have conveyed you know some flavor of the of the richness of the physics

that arises because of the presence of the magnetic field in the fluid. And for the rest of the

lectures what I will do is I will now sort of change gears and move away from ideal

magnetohydrodynamics to start talking about something called reconnection ok, which deals

with cutting and pasting of field lines which is prohibited in ideal MHD. 

The reason we are we will talk about this is because reconnection is held responsible for a

whole lot of energy conversion processes which are important in astrophysics. So, for the

time being we will stop here.

Thank you.


