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Lecture - 53
Magnetohydrodynamics (MHD): Magnetic flux-freezing (contd.), magnetic dynamos
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So, you see we talked about the I 1 and the I is sorry, not I this both are I 2.
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We talked about this I 1 and I 2 and we assigned a physical meaning to I 2 right, but the thing
is we are really talking about the change in flux through the curved cylinder not only through

these cross sectional surfaces you know, but through the entire curved cylinder ok.
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So, in other words the total flux, the total flux through the curved cylinder, which curved
cylinder? Well, this one right. I mean the this, this, this curved cylinder. It includes, it has two

pieces.

So, to speak flux through top and bottom surfaces which is what we have been talking about
so far and also flux through the side surface. In other words the side surface this thing, this

stuff. Not this not the you know cross sectional. Let the side surface be called sigma ok.
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So, therefore, I can symbolically write it as the, I can symbolically write it as B dot dS S t plus
delta t right minus well, it is it is really I am not writing explicitly r and t and everything here.
It would be here would be r t plus delta t here, it would be simply r and t, but so, therefore, |

am [ am keeping this a little less just to avoid too much complication.

So, the difference in flux through the through you know the top and bottom surfaces plus
whatever flux is passing through the side surface ok, through this side surface, through this
surface here, the side surface of the cylinder right and now these are all a B dot dS kind of
thing is not it. Now, this is all B dot dS and by the divergence theorem we get the integral of
B dot dS is simply ah, we know that this is equal to the integral of divergence of B right dv.

And we know that this is equal to 0, always equal to 0 divergence of B is always equal to 0,

no matter what right. So, this has to be equal to 0. So, this connection between the surface



integral and the volume integral like this is through the divergence theorem ok. So, there is

that. So, this is one important thing.

Now, let us talk a little bit about this guy. We have mostly been concentrating our attention
on this fellow and that fellow. Now, let us concentrate our attention on the flux through the
side surface. So, what is it? Right. So, first of all what is this sigma? The sigma is the side

surface of the cylinder is not it.
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So, sigma comprises length element along the loop I will go back to the figure in a minute

and show you what I mean. It comprises, it comprises this right and of course, this yeah.

So, it comprises the length element along the loop like I have written and which is the V dt is

essentially. So, it would essentially be sort of a you know integral this times V dt which is



this ok. So, so, that is what I am writing here ok. So, over the side surface this B dot dS is
equal to the contour integral ok of B dot. What is this side surface? The side surface is the d

small s which is the length element cross V delta t.

Now, it is important to figure out why I am writing this cross right. So, essentially what I am
saying is it is a dS, it is a dS cross V. Well, the reason [ am I am writing this cross is because
you see the V is along this direction and the ds is along this direction. So, what would be the
cross product of azimuthal times z directed field in cylindrical coordinates, it would be a

radial right.

In cylindrical coordinates you have the radial, the azimuthal, and the z directed. So, phi cross
z gives you r and so, in some sense this ds cross this thing that we wrote down ds cross V this
would be in the phi phi hat direction and this would be in the in the z hat direction and the

crossing these two gives you r hat and that is exactly that is say.

So, when we talk about the side surface of a cylinder the outwardly directed area element is
indeed along the radial direction that is the reason we write this cross product and this cross
product is very-very important ok. This one I can also write as, I take the delta t outside ok
and I can write this as a contour integral of V cross B dot ds and this comes from vector
algebra identity a dot B cross ¢ ok and this is ¢ cross a dot B ok and this delta t is simply

comes outside.

You should try to figure out why this is true ok and this is a contour integral right of V cross
B and using the stokes theorem. The contour integral can be turned into a surface integral and
so, I would have a curl here curl of V cross B dot ds ok, where there is a dot ok, here and

there should be a dot here.

The dot is outside of the bracket ok. So, this comes from stokes theorem right and so, this
equality comes from stokes theorem ok and you already start recognizing where this, this is
an important part of the of the induction equation right. Curl of V cross B you recall how it

appears in the induction equation.
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So, therefore, we have so, we have the third part now. So, the I 1 which we defined here,
which is the change in flux due to the change in loop position which we wrote down as this

yeah.

So, that is equal to change in loop position right. So, initially the loop was at St plus delta t
right and the flux is right dot d rho. You remember we are now fussing about I 1, because you
know I 2 we have already gotten a nice physical interpretation of I 2. So, so we do not worry
too much about that ah. So, so let us now get back to I 1 and. So, I 1 is equal to this minus S

of t B rplus delta t.

You see I am keeping the magnetic field the same, I am only changing the loop with the cross

sectional area which is changing, because of the change in loop position ok and this is equal



to minus delta t curl of V cross B right. This is this comes from here of course, this comes

from here ok. It actually comes from here and here.

So, what we did and was we identified that this is equal to this quantity this B dot dS is equal
to so that is what we did right and I 1 we wrote it down like this and so this is where we have
this important thing yeah and we know that I 2 is equal to we already written this down this is

equal to delta t S dB dt dot dS.
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We would we are already you know identified the I 2 to be this. So, essentially this becomes |

1 and this becomes I 2 and I 1 plus I 2 is what we are concerned with of course, right.
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So, therefore, delta phi which is what you know, at the end of the day we are concerned with
delta phi and we wrote that wrote down delta phi as I 1 plus I 2 right is equal to delta t times,
because we identified I 1 as curl of V cross B times delta t we write down this as delta t times

minus this is I 1 curl of V cross B, this is done yeah.

And I 2 we wrote down as the same delta t dB dt right ok and also plus like this and of course,
I already always have a surface integral. So, I should have a surface integral here too and what
is this? This 1s what we started with for an ideal you know, if you if you recall this is what we

started with dB dt is equal to curl of V cross B right.
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So, I put a negative sign on this yeah and I take it over to the other side right and so, dB dt
minus curl of V cross B has to be equal to 0 and that is exactly what we have here. We have
dB dt minus curl of V cross B and this is always equal to 0 right and so, since integral is equal

to 0 the integral will always be equal to 0 and therefore, we have right, we have this equal to

0.
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In other words, what we are saying here is that d phi delta phi delta t which in the in the limit
goes as goes to d phi d t is equal to 0 and this is what we were have to prove ok. So, and phi
is the magnetic flux is the magnetic flux which is conserved with time and this is a direct
consequence of the induction equation, this is a direct consequence of the fact that the
integrand here is equal to 0. In other words, the this is the induction equation and this is an
integrand and it is equal to 0. So, there is no choice, the magnetic flux has no choice, it has to

be conserved ok.
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So, what we have done now is we have we have shown, we have shown how magnetic you
know flux conservation or what is called flux freezing and I want to put this flux freezing in

arises out of the induction equation.

This is what we have shown and how did the induction equation arise? Well, the induction
equation simply arise arose from Maxwell’s equation with the assumption of infinite
conductivity ok and once you have in infinite conductivity you can never have an electric
field inside the fluid and so, any electric field has to be only due to the fact that an observer is

not inside the fluid at all.

So, you have that curious e equals minus V cross B over c kind of thing and you substitute

that into amperes law and you get the induction equation.



So, once you have the induction equation which is I would say you know one could go so far
as to say that this is a natural consequence of infinite conductivity, then we know that what
we have shown here is magnetic flux is conserved. So, flux is frozen you know in a situation
where the conductivity is infinite ok. Now, what about this? Why are we making such a big

deal about it right?
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So, the point is flux freezing, magnetic flux freezing is an important ah, magnetic flux
freezing is central to explaining dynamos, magnetic dynamos in astrophysical situations. So,

the thing is why what is this thing called dynamo?



Well, a dynamo is as you know you want to sustain magnetic field that is what I mean
dynamo does and that is what you would do in a bicycle dynamo for instance, these days you

just have LED batteries and you turn the turn the light on.

You know when you want a light in front of a bicycle, but in the olden days what you would
have is you would have a dynamo that you would it would be mechanical rotating object that
you would that you would tilt onto your onto your bicycle tire and so you would be rotating,
you would be mechanically rotating the spindle by your muscle power and that would

generate a current ok.

Now, we know in MHD the current is nothing, but the curl of the magnetic field. So, in our
context a dynamo would simply mean device that helps us sustain magnetic fields ok. Now,
why is this important? Because in astrophysics you know magnetic fields are quite

ubiquitous. They are everywhere.

In many cases they are measured directly as in the solar wind, the immediate environment of
the earth and so on so forth. We know that the earth has a magnetic field and we have indirect
evidence of the fact that the sun also has a magnetic field ok and we have even more indirect

evidence.

So, the fact that the galaxy and is permeated by a magnetic field fairly exotic objects like
pulsars, they have very high, very strong magnetic fields. These are all indirect evidences, but

nonetheless magnetic fields are everywhere in astrophysics.

This is kind of well known, but the same time no plasma is infinitely conducting ok and there
is always a finite resistivity in any plasma and as we know this kind of so, this integrand
would never be exactly equal to 0, there will always be an additional term here. Some kind of

a lambda times nabla square B which would be a resistive term.

So, essentially what we are trying to say is that in the pres presence of finite resistivity

magnetic field simply cannot sustain. They will always decay away and if you put in the



numbers you will find that for expected values of resistivity really there is the magnetic fields
that we observed have no right to be there ok. They should have really have decayed away
long ago. How are they there? That is the question, at the heart of dynamos ok.
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So, the question we are asking is what is a mechanism that generates a how to so, the question
really that an astrophysical dynamo theory should address is a how are magnetic fields
generated or amplified or amplified from small seed fields. So, now, here is the thing you
always have to assume that there was some existing seed field. The magnetic field that we are

observing today is not that seed field ok.

It is a it is a very matured field it is a tree. So, to speak that has grown from the seed, but you
cannot get away from the fact, you cannot generate a magnetic field from 0. You always need

to have a small seed field. So, you have to given picture of, given understanding of a



magnetic field dynamo has first got to address this question ah which is that how are

magnetic fields generated or amplified from small seed fields? So, this is one question.

Slightly more elaborate way of considering this question is we have to show that the presence
of a seed small seed magnetic field renders a system of MHD equations unstable with time so
that you show and invoke an instability which make the seed fields which makes the seed

fields grow. So, this is one thing, this is one ingredient of bona fide dynamo theory.
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The other ingredient is that after the seed fields, the seed fields have grown, how do they
sustain how do they sustain themselves against resistive decay? Because now, we are talking

practical stuff, we are not talking an ideal MHD kind of situation.



We are talking about you know a situation where there is always a resistive term and that
resistive term we have seen it leads to the decay of magnetic fields, decay with time and so, if

you wait for long enough and in astrophysical situations.

It is it is always one can put plug in the numbers and show that we have indeed a greater for
long enough in many-many situations and if there was no mechanism for the seed fields for
the fields to have grown from the seeds and attained a certain value, if there was no
mechanism for these fields to be to sustain themselves in some manner then there was an

instability which enabled these seed fields to grow.

These grown fields would die due to resistive decay unless there is a mechanism to sustain
them. So, this leads us to the next question that a dynamo scenario should address which is

that of sustaining ok and so, so, these are the two basic things about a magnetic dynamo.
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There are some other complications that sometimes for instance in the context of the sun the
large scale large scale magnetic fields which have been generated and somehow you can show
that the large scale generate magnetic fields which have been generated are able to sustain ok

they are also cyclic.

In other words the large scale fields are cyclic in time. In other words they grow, then they
die, they grow again and they die again ok that is another complication, but so that is another
complication and we will not get so much into that, but you have to wonder. Now, why did I
suddenly start talking about dynamos and so on so forth evidently, it has some connection

with the alpha influx phrasing theorem right.

So, the most common approach to these two uh questions to solving these two questions, how

are magnetic fields generated or amplified from the small seed fields and having amplified



them how do they sustain against you know magnetic decay the most common approach is

what is called a kinetic dynamo.
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Ah rather this was the historically the first kind of approach where the velocity field the
velocity field V is specified, is prescribed or specified, I do not bother about how this came
about it is given to me from observer from certain observations which we will discuss ok and
the magnetic field is evolved the magnetic field is evolved in time and we know we know

very well this is what we have been talking about for a long time now.

What is the one equation that tells you how the magnetic field, you know evolves in time in
response to a given a prescribed velocity field? This, the magnetic induction equation, you

prescribe a certain velocity field and then you see how the magnetic field is evolved.



So, this is at the heart, this is the heart of this approach called a kinetic dynamo ok and so, we
what we will see when we meet next is that this particular approach has been quite successful

in explaining at least some elements, not all elements.

There are still very-very big unanswered questions in this in this field, but still there has been
some remarkable success in explaining at least some elements of these two questions
pertaining astrophysical dynamos; one is how do seed fields grow and having grown how do
they sustain in the face of resistive decay. And we will mostly address the second question
how these large scale fields sustain using this kinetic dynamo picture. So, we will discuss this

when we meet next.

Thank you.



