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So, let us now establish the basic equations of Magnetohydrodynamics. And since, we are

going to be dealing with electric and magnetic fields. Yes, we did say that electric fields are

technically 0 inside of a fluid. But, nonetheless you know we have to start with them and then

show that they reduce to 0 right.

And so, since we are talking about electric and magnetic fields, we have to deal with

Maxwell’s equations right. And so, these are the four Maxwell’s equations, these are the two

divergence equations. This is essentially saying that the divergence of B is 0 in I E, there are



no magnetic monopoles that is what this equation is saying, no magnetic monopoles or

magnetic field lines are always closed.

This is essentially saying establishing the relation between ok, here sigma is not conductivity,

sigma is this is charge density. I beg your pardon for the change in notation, but normally we

will use sigma for conductivity, but in this particular equation it is charge density. So, this is

telling you how the electric field is related to charges right. And so, these are the two

divergence equations. And this is telling you how a changing magnetic field produces an

electric field, and this is telling you how a changing electric field produces a magnetic field.

And so, this would be this is essentially the displacement current term and this would be the

physical non displacement current part of the current, if you will ok. So, that is the

displacement current and this is the non displacement current. 

Taken together this at the left hand side here would comprise the charge density, the current

density and the right hand side is the curl of B. And I must emphasize that the all of these

equations are written in cgs ok. T hat is why you see the appearance of c like the speed of

light ok.

If you are writing this you might, you can equivalently write these things in SI units, it is just

that these constants will appear slightly different. If you are more comfortable with SI units

that is fine no problem, the basic physics is still the same. But, I wanted to you know

emphasize that these four equations the Maxwell’s equations are written in cgs units ok right.
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So, now, let us take the divergence of the first equation of this equation right. So, let us take

the divergence of this equation, in other words I operate this entire equation by like that right.

So, I have the divergence of J which is that right and the divergence of well, I this would

essentially become d over dt of the divergence of E. I am assuming that the time and space

derivatives can be interchanged. And for the divergence of E, I substitute from here right, for

the for this one I substitute from here ok.

And the divergence of a curl is always 0. So, therefore, this term taking the divergence of the

right hand side just gives you 0. So, taking together taking the divergence of the first equation

gives you what is called the charge continuity equation ok, which you must which you know

you are familiar with from basic electrodynamics. This is essentially saying that the

divergence of the current density is equal to the time derivative of the charge density ok.



If you know there is no current flowing inside or out of volume through the surface. There is

no way the charge density inside that volume will be changing with time that is what this

equation is saying. You can also think of this as the equation for conservation of charge.

Charge is always electric charge is always conserved that is what this equation is saying ok

so, that is one thing.
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And now, to deal with an all important electric field, we made a big fuss about the electric

field remember, we kept saying that you know the electric field in the fluid frame is equal to

0. So, let us deal with it ok alright.
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 So, firstly, the fluid is supposed to be infinitely conducting right. The conductivity is infinite

therefore, by you know there is no way you can have an electric field inside of the fluid, there

is no way you can have an electric field in the quote unquote fluid frame, that is not possible

ok, right.

So, ok so but what about an external observers frame, what about an observer i.e; an observer

who is outside the fluid, what about this kind of observer ok? So, it is clearly the way we are

talking about this, we are implying that the electric field need not always be 0, for someone

who is not immersed in the fluid. The electric field has to be 0 for someone who is immersed

in the fluid simply, because the fluid is infinitely conducting.
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But, in order to in order to answer this question, in order to answer this question; we have to

resort to a standard Lorentz frame transformation and that is this ok. So, the prime so, the

primes would denote the fluid frame ok. So, and we have a parallel and and perpendicular in

other words what we are going to do, is you have suppose you know you have two frames.

One a fluid frame and one is an observer’s frame ok.

And the fluid frame has primes in it. So, wherever you see primes E prime, B prime and so

on, so forth you are in the fluid frame. Primes denote the fluid frame ok and say for just for

concreteness, this is the X axis. So, this would be the X prime ok, and this would be the X

axis here.

So, this would be the observer frame, the external observer frame. And the main thing is the

external observer is moving with a velocity v with respect to the fluid frame, and that is how



you make the transformation. So, the parallel refers to you know parallel to v and

perpendicular refers to perpendicular to v ok. And, for simplicity we have taken the you know

in this particular way of doing things, we have taken v to be parallel to the X axis ok.

This is no loss of generality, because even if you wanted to treat v, some other v you would

just split up the components that is all ok. The basic results are exactly the same right. So,

now, this is the Lorentz transformation of electromagnetic fields, Lorentz transformation ok.

Which is relating the fields in the fluid frame in other words; the frame and all quantities in

the fluid frame have a prime on top of those like this.

And all quantities in the non fluid frame, in the external observer frame. Which can

potentially be moving with respect to the fluid frame ok, those do not have primes ok and the

parallel denotes parallel to the velocity of movement and perpendicular denotes perpendicular

to that direction right. 

And this essentially how you transform between these two frames and this is called Lorentz

transformation. The E parallel prime is the same as E parallel; however, that is not the case

with E perpendicular E.

And this gamma is essentially, you see this v here the gamma is essentially the Lorentz factor.

And the gamma is defined as 1 minus v squared over c squared raised to minus 1 half like

that ok, maybe I should erase this and write it again. Well it is a little difficult this is

essentially 2 ok. So, gamma is 1 over square root of 1 minus v squared over c squared ok.

So, that is what this gamma is it is essentially v it is a function of v ok, c is the velocity of

light ok. And so, the E perpendicular prime is not the same as E parallel E perpendicular that

is this v cross B business sitting in here. And, however so, that the B parallel prime is the

same as B parallel, so, as far as the parallel components are concerned that both the electric

field and the magnetic field, they are unaffected. It is only the perpendicular components

which are affected. 



So, this is how you transform between the prime frame and the unprimed frame ok right.
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So, let us keep this in mind. Now, we know that all primed electric fields are 0 right, there is

no electric field in the fluid frame in the prime frame, there is no electric field. So, E parallel

prime is 0. So, therefore, E parallel is also 0 for that matter E perpendicular prime is also 0

ok. So, in other words E parallel prime is equal to 0 and E perpendicular prime is also equal

to 0 by definition.
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Therefore, you get so E parallel this is already 0 just. So, directly from here you get this, it is

very interesting ok. So, the quantity in the brackets is equal to 0 and that just gives you this.

So, now, pay close attention this is the electric field not in the fluid frame that is always zero,

but this is the electric field in the external observers frame and that is non zero that is related

to the magnetic field that the external observer sees in this manner ok.

And note we usually deal with non MHD, there is such a thing as relativistic MHD, but you

know generally speaking, we deal with non relativistic speeds in MHD. And therefore, v over

c is much much smaller than 1. So, even in the non prime frame even in the external observer

frame, because v over c is much much less than 1. The bare magnitude of the electric field is

very very small, in comparison to what well the magnitude of the magnetic field for instance. 



So, what does that say about electric fields, electric fields are technically 0 in the fluid frame

and even in the external observers frame. Because, we are restricting ourselves to non

relativistic speeds, even in the external observer frame the electric fields are pretty small ok.

So, this is something to keep in mind very very firmly right. 

So, this was a brief detour into the role of the electric field in MHD ok. And this is about it

we will not be talking too much about electric fields anymore, as we said we will mostly be

encountering magnetic fields from now on, not mostly exclusively ok. And this is why ok?

Before going ahead it is important to be very clear about the details and this is why, you know

you do not worry about electric fields at all in MHD ok right.
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So, now, using this fact using this fact that we just derived E equals minus v cross B over c.

What we do? Is we use this in faradays law in the so, you have the curl terms were Faraday’s



law and Ampere’s law right. So, in the basic Maxwell’s equations that we saw, this one this

was Faraday’s law and this is Ampere’s law right. 

So, what we are going to do now is substitute for the E that we have found inside Faraday’s

law ok. So, we are going to use E equals minus v cross B over c in Faraday’s law right. So, to

eliminate this E in order to get what is called the induction equation, which is which gives

you the time evolution of B, there is only B you see in this equation there is no E at all ok.

So, this given a certain velocity field, this tells you how the magnetic field evolves ok, that is

what this equation is telling you. Given a velocity field V, this tells you about the evolution of

the magnetic field the time evolution, the time evolution of the magnetic field B, you see the

time evolution.

All you need is v right and this gives you this is a complete dynamical equation for B ok. And

this is what is called the induction equation it is very basic in MHD many times, when you

see the equations of MHD written down. They just start from the induction equation

assuming that you know right. So, it is important to know where the induction equation came

from and this is where it comes from ok.
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It describes how a magnetic field evolves in response to a magnetic field to a velocity field v.

Of course, in a perfectly conducting fluid, why a perfectly conducting fluid, because this

whole thing this thing applies only to a perfectly conducting fluid, E equals minus v cross B

over c. If the fluid is not perfectly conducting this does not apply ok.

So, as such the equation as it stands applies only to a perfectly conducting fluid. However, we

will not derive this, but we will say this in the presence of a finite conductivity in other words

in the presence of dissipation. And we will not derive this the induction equation has this

extra term, this is an extra term. Where this lambda is related to the conductivity sigma c, this

is the conductivity ok.

So, you have the conductivity in the denominator here ok. So, this term in blue gives you the

effects of finite conductivity or finite resistivity however, you choose to look at it ok. If you



did not have this term if the conductivity is infinite, then this lambda would tend to 0. And

you would have the plain vanilla induction equation. And we derived this induction equation,

we will not we did not make any attempt to derive this extra piece, I am simply stating this ok

right.
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The second term contributes simply to the decay of magnetic flux, the second term in blue,

we will see how. Now, just like we did dimensional dimensionless numbers in fluid

mechanics, you know and we did make some mention of the dimensional dimensionless

numbers in magnetohydrodynamics.

But, here is the first time we are considering them explicitly. And so, let us see here the first

term you see, this guy the first term on the right hand side I must say. First term on the RHS:

this guy is some kind of v times B and this curl is a differentiation right. So, it is a d over dx



kind of thing, so you have and so, the d over dx can be some I mean you know approximated

by 1 over L right. So, this first term is order VB over L.

The second term is of order what we do is we do not bother about the dimensions of lambda,

we keep lambda as it is right. And, the B as it is and since there is a del squared this would be

something like a d square over dx square. And therefore, that is represented by L square here

ok. So, the first term is order VB over L, the second term is of order lambda B L square

lambda B over L square.
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And the ratio of these two numbers, the ratio of the first term to the second term is called the

magnetic Reynolds number, very similar to the fluid Reynolds number that we talked about

earlier. And the magnetic Reynolds number is given by L times V, this divided by this order

of magnitude LV, where L is some macroscopic length, V is some macroscopic velocity that



we are talking about say the fluid flow velocity which of course, has to be non relativistic ok,

divided by lambda.

So, for an infinitely conducting fluid lambda is technically 0, you see the sigma c appears in

the denominator so, and this is the conductivity right. So, lambda is technically 0. So, for an

infinitely conducting fluid since this is 0, the magnetic Reynolds number shoots up to infinity

right. And for a highly resistive fluid, where the conductivity is very finite, where it is large

and therefore, lambda is small.

The magnetic Reynolds number conversely is small. So, infinite conductivity infinite

magnetic Reynolds number that is how it goes ok; it is somewhat like you know 0 viscosity

fluids Reynolds numbers went to infinity you remember that right. 

Fluid Reynolds number was LV over nu, where nu was the coefficient of viscosity. If the fluid

was in viscid, then the fluid Reynolds number went to infinity. Here if the fluid is infinitely

conducting, then the magnetic Reynolds number goes to infinity. 

We made this comment here, saying that the second term, this term contributes to the decay

of magnetic flux let us justify this.
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Consider for instance, just the dissipative term in other words, we will not bother about this

term, we will only bother about an equation that has this term and this term ok. Which is like

this d B d t equals lambda del square B. This is a standard form for the diffusion equation. 

This is a this is a diffusion equation, this is like you know in one dimension for instance, this

would be something like d B d t equals lambda d square B d x square right this is a diffusion

equation is not it.
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And the solution to a diffusion equation is well known the so, like that ok u xx is d square u

d, where I say u t is d u d t, and u x is d square u d x square that is a notation ok. So, this is a

standard diffusion equation.
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And the Green’s function for this the Green’s function is just, you can think of the Green’s

function as a response to a delta function excitation ok. In other words the solution for at time

t equals 0 you have a delta function injected into this. And you want to see how this excitation

proceeds with time that is what the diffusion equation is going to tell you and the solution is

this.

So, you have a broadening decaying exponential. So, this would be decaying Gaussian

actually it is something like this. You have a time on the x axis right you started out with a

delta function like this. And with increasing time what is what you are saying is the variance

increases and the height also, the height decreases, with increasing time the height is

decreasing and the variance is increasing right.



So, you started out with the delta function at time t equals 0, at a later time it would look like

this. And what does this represent? This represents the magnetic field at a still later time it

looks like this. In other words you started out with a point like magnetic field, as time

progressed what happens was the magnitude of the magnetic field decreased. And it

broadened and as time progressed even more the magnitude decreased even more, and it

broadened even more. And what is this? 

This is essentially saying that the magnetic field is spreading out its diffusing ok.
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So, an initial data function turns into a Gaussian that gets shallower and broader with time.

So, the initial magnetic field dissipates away due to the effect of the finite conductivity. And

the effect of the finite conductivity is all embodied, in this lambda in this lambda term right.



So, if there was no if the conductivity is infinite, then this term would not be there and the

magnetic field would not diffuse away, it would not dissipate away. So, that is what I that is

why we made that statement in the previous slide. So, and so, this would be a low Reynolds

number situation, you remember Reynolds number, the magnetic Reynolds number was

defined as LV over lambda.

When the when the conductivity is finite and that would mean that lambda is essentially

small, and sorry lambda is large. And therefore, the magnetic Reynolds number is low ok.
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So, this situation low is typical of lab situations, low magnetic Reynolds numbers are

typically found in lab plasmas. Whereas, a high Reynolds number situations are typical of



astrophysical situations. In astrophysics, we typically deal with high magnetic Reynolds

numbers ok.

And, if you remember the several examples that we discussed regarding fluids in

astrophysics, you know accretion even shock propagation supernovae so on, so forth. In

astrophysics we were most we were also mostly considering high fluids Reynolds numbers

ok. And as we are saying here; the magnetic Reynolds numbers are also very high in

astrophysical situations.

So, in other words in astrophysical situations the fluid Reynolds number also tends to infinity

ok. So, both the magnetic Reynolds number and the fluid Reynolds number in astrophysical

situations are very high.
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So, this is something to keep in mind there are many caveats to this statement, though I just I

although the statement is generally taken to be true, one should accept it only with a grain of

salt, I just wanted to you know make that clear.

(Refer Slide Time: 28:11)

So, there are some consequences for the from the induction equation. So, for as if we take the

conductivity to be infinite in other words, if we take this term to be essentially 0, in other

words if we take the magnetic Reynolds number to be technically infinite.

You only have this, the induction equation is just this right. What you do is you suppose, you

take its divergence, you take the divergence of both on both sides right. So, you take just this

of this whole thing right. And you allow you know you can take the divergence inside the



time derivative ok, then you know that the divergence of a curl is always 0 right. Therefore,

what it is saying is that the time derivative of the divergence of B is 0 ok.

(Refer Slide Time: 29:04)

So, therefore, this is not explicitly saying that the divergence of B is 0 mind you; this is how

we have normally learned our electrodynamics right. The divergence of B is always 0 this is

something that is sacred. That is not what MHD is saying it is simply saying the time

derivative of the divergence of B is 0 ok. 

But, if it is specified as an initial condition in other words, if divergence of B is 0 at the

beginning of your simulation it will remain that way ok. It will that condition will not change

with time, on the other hand, if you had a non zero divergence of B due to some reason ok.

Due to artificial resistivity or some problem in your simulation, then that will remain frozen

as time progresses that is what this equation is saying ok.



Now, how about currents this is a very interesting. So, what we do is? We substitute E equals

v cross B over c into Ampere’s law here right. So, we this d E d t we substitute this here and

we get that ok. There is there is no mystery I just substitute this in here and I get this. Now,

for non relativistic speeds in other words for v over c much less than 1, this term is negligible

right. So, this is what I mean here therefore, we have J is equal to essentially curl of B ok.
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So, J is essentially curl of B how about we take its divergence, we take divergence of J. And

then you know what’s going to happen I am going to take this is just a constant. So, I am

going to take a divergence of the curl of B, which is saying that the divergence of J is equal to

0. So, currents also have no sources or sinks and this is a very very important statement,

which needs to be thought about in some detail ok. 



And this is very unlike our normal notion of currents in electrical circuits. And this is so

important that we will consider it, when we come back the next time, this statement the fact

that the divergence of current density E is equal to 0, technically equal to 0 in

magnetohydrodynamics. So, this is something that needs some thought. And so, we will

consider this when we meet next for now, we will close.

Thank you.


