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In the last video we saw that we can go from Lagrangian to Hamiltonian through a Legendre 

transformation. So, I start from L of q and q dot and t and I go to Hamiltonian which is a 

function of q, p and t. And as you may recall I was saying that we are going to treat q and p at 

equal footing and when we went from L to H we had the following relations which were true, 

one is delta L over delta t is same as delta H over delta t. 

So, the partial derivatives of L and t with respect to time are equal. And also if you take the time 

(sorry) the derivative of L with respect to one of the coordinates then it is same as the derivative 

of the Hamiltonian with respect to the same coordinate except for a minus sign, so these two are 

identical. And also we had q dot to be equal to the derivative of Hamiltonian with respect to the 

corresponding momentum, conjugate momentum. Remember the p turned out to be the conjugate 

momentum that you had seen earlier.  

So, this is what you these three you have these equalities you have purely arising from you going 

from L to H through Legendre transformations, they do not you did not use equations of motion 

for these to hold true. So, if you also in further demanded the coordinate q satisfies the Euler 



Lagrange equations of motion from that you can arrive at the following equation of motion 

which was the following. So, if you look at p maybe not here, p if you look at the time derivative 

of one of the momenta, let us say pk then that was same as delta H over delta qk and there has to 

be a minus sign here.  

So, whenever you are taking the derivative of H with respect to qk not whenever I mean these 

equations of motion there is a minus sign. And we also said that because you are treating q and p 

at the equal footing we will also treat this one as equation of motion. But remember this this one 

you did not arrive at by using any Euler Lagrange equations of motion but in the Hamiltonian 

formalism we are going to treat this at the equal footing to this one.  

So, delta H over delta pk and these are your Hamilton's equations of motion that is fine now let 

us ask what is the total derivative of Hamiltonian with respect to time? So, I am asking what is 

dH over dT and it is easy to evaluate dH over dT is delta H over delta q and then you have dq 

over dt which is q dot and q dot is delta H over delta p, delta p, let me put a k, k and that is fine.  

So, there is a summation over k implied here plus I will take now take a derivative of delta H 

over delta p, because it is also function of p and there are several of them, so let me call it pk and 

sum over all the case and then you have a p dot pk dot here, but pk dot is minus delta H over 

delta qk, so I put a  minus here delta H over delta qk and then the third term will be the partial 

derivative of as H with respect to time because you are Hamilton could in principle depend 

explicitly on time. 

But now these two terms are equal, you have delta H over delta pk, delta H over delta pk here, 

delta H over delta qk, delta H over delta qk, so these two cancel, so let me just cancel them and 

what you are left with is delta H over delta t. So, the result we get is the total derivative of 

Hamiltonian with respect to time equals the partial derivative of Hamiltonian with respect to the 

time.  

Okay that is nice and it is a nice result you can say more because you also know that the partial 

derivative of H with respect to time is equal to delta L over delta t, now if your Lagrangian did 

not depend explicitly on time then your will Hamiltonian will also not depend explicitly on time 

that is what this equation is saying.  



So, let us say the explicit time dependence on explicit time dependence is not there and if that is 

the case then your total time derivative of H will be 0. So, if L or equivalently H does not depend 

explicitly on time then your this thing is 0. And if that is the case then dH over dT is equal to 0 

which means that Hamiltonian is conserved for such system.  

And you may also recall that very early in this course we had encountered this quantity pq dot 

minus L which is what we are calling Hamiltonian here and this is what we call Jacobi's integral 

in very early lectures and we also saw that this quantity can be identified with total energy if 

certain conditions are met, it is not always the total energy, but under certain conditions it can be 

identified with total energy and let me just remind you what those conditions were, you can go 

back to those early lectures and see.  
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Remember that we showed I think we were calling it small h at that point of time, but the small h 

and let us call it capital H now but at that time it was being written as q, q dot and t, not as qpt. 

And we saw that this is T2 plus U minus T naught where the kinetic energy T you can write as 

T2 plus T1 plus T naught and the terms T1 and T naught are present only if your transformation 

to generalize coordinates involves time explicitly.  

I hope you recall this and if that is the case, if they are explicitly time dependent transformations 

then you have T0 and T1 as non-zero quantities and this is what you get here then for the 

Hamiltonian. And in here U is a function of q only the coordinates only. Now, let us suppose that 



the kinetic energy T only equals to the quadratic piece, so it has q dot square, qk dot ql dot 

contracted with some ai ak al, only if this piece is there and if U is only a function of the 

coordinates not of the velocities, then our H becomes T2 plus U and we saw that this is what was 

equal to the total energy of the system.  

So, let us say you have such a system where the Hamiltonian can be identified with total energy 

and then the above relation dH over dT is equal to 0, if that holds true would imply that total 

energy is conserved. Let us take a quick simple example of a harmonic oscillator and if you 

recall the Lagrangian is simply half mx dot square minus half k square x square.  

So, if you now do a Legendre transformation then you know that the Hamiltonian will be px dot 

pq dot is your px dot minus and then you have your Lagrangian which is half mx dot square 

minus half and you also recall that your del L over del x dot is what is p which if you take the 

derivative you get mx dot which you can solve to write x dot to be p over m and your (())(12:22) 

square I think I am there is no square here.  

So, that is fine and where were we, so with this I can write the Hamiltonian to be p square over 

2m, I am just substituting for x dot p over m, so I get p square over 2m plus half kx square. So, 

that is the Hamiltonian and which you already knew because this is the total energy for the 

system. And the system is conservative it depends only, and the potential energy depends only 

on q, only on the x and this is anyway just has the quadratic piece in velocities, so you expect 

that the Hamiltonian will come out to be this.  

And because this Lagrangian does not depend explicitly on time, remember the coordinates 

depend on T but that is that time dependence is implicit through the coordinates, but there is no 

explicit time dependence in here so partial derivative of H with respect to T is vanishing and 

which implies that the total derivative will also vanish with time, which is just that the total 

energy is conserved which you already know for harmonic oscillator which means that your H 

will be a constant.  

So, let us call it E that constant energy and which implies that these piece is p square over 2m 

plus half k x square they will be equal to some constant E and if I divide by energy on both sides 

I get this that is good. Now, we can ask how things look like in phase space, you remember we 

introduce phase space, let me go back. 
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This was the two n-dimensional space in which you have access to be q1 q2 so and so forth and 

p1 p2 and so forth.  
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So, for harmonic oscillator 1 dimensional harmonic oscillator which we have just looked at the 

phase space is how many dimensions? Phase space is two dimensional, one for q and one p, so 

you have your let us say here q and p or maybe I think I called x and p, so let me write x. Now, 

we have the equation as p square over 2mE plus k over 2E x square is equal to 1, this is what I 

think we had.  



Now, if you are given one oscillator and then for that oscillator this is the condition that has to be 

satisfied, so if you look at what this represent, it represents an ellipse in the xp plane but for 

simplicity let me put all the constants m and k to be 1 then you just have circles. So, you have p 

square plus x square is equal to 2E.  

So, you get concentric circles and radius of the circle depends on your total energy of the system, 

treat them as circles, treat them as circles these are not very circular thing which I am drawing, 

let me draw again, so you have 1 circle here which this corresponds to some energy response this 

(())(17:15) responses to a little higher energy, so your system depending on how much total 

initial energy has been given to it, it will be moving along one of these circles.  

So, your entire system is denoted by one point, at a given time it will be somewhere and as time 

changes that point is going to move. I hope that is clear because if you specify the coordinates at 

a given time all the coordinates, in this case it is only one and all the momenta and then that 

represents one point in your 2 n-dimensional space.  

So, your system is going to be represented by a single point in phase space, let me write this 

down anyway, so system at any time t will be represented by a point in the phase space. That is 

clear. So, now as time changes that point is going to move with time, so that point is going to 

flow. And what I have drawn here as these circles is that if you if your energy such that your 

point is here then it is going to move along this circle for this one dimensional harmonic 

oscillator.  

And if your energy was different and it was such that it is here and it is going to move on this 

circle. So, that is what our phase space will look like the trajectories of this point or the system 

will look like in the phase space that is good. Now, I am going to prove a very nice theorem and 

the theorem is the following, actually before I say the theorem let us ask the following.  
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So, let us say I have some let us say we are given a system with two n-dimensional phase space, 

meaning it has n generalize coordinates and correspondingly and generalized momenta and the 

particle and this the system will be denoted by a point in that phase space by a point in the phase 

space, so I do not wish to draw when I cannot not that I wish but I cannot draw a two n-

dimensional space but I can draw two dimensional space, so I am going to draw it like this.  

So, you can imagine that q stands for all these coordinates, you can think that this is a two 

dimensions two n-dimensional space, so you have all q1, q2 and qn in here perpendicular to all 

these and similarly p1, p2 and so forth all these coordinates are here. An imagined a patch a 

region, so a region not a patch because I am thinking of two n-dimensions, so imagine a region, 

here and this is going to occupy some volume, so just to give it a little bit of 3 dimensional look 

or whatever, now let me draw this curly line, so you imagine it, it encloses some volume.  

So, right now I am not trying to even make a any connection with system or whatever, your 

system is given, so each point corresponds to one system, but forget about all that, that how 

many systems are there and all these questions just look this as a geometrical problem, we are 

given some volume enclosed by this, so the region let us call it I think I want to call it some or 

something whatever and we also tell the equations of motion.  

So, each point here is going to evolve in time according to the Hamilton’s equations of motion. 

So, it is going to go somewhere as time goes on and what we want to ask is if I start with some 



volume here, so if I look at all these points, all these points are going to move in time and goes to 

somewhere else and I want to ask how this volume is going to change with time.  

So, if I wait for some time and after a while if this initial volume enclosed here was V0 or V at 

time 0 t0 what it becomes after some time has passed, that is what we want to ask, let us say it 

becomes like this. So, I am not saying the shape will be similar or same, shape changes and we 

want to know whether it has increased or decreased or what has happened at a different time t, so 

you go from t naught to t and this is what we want to ask.   

And what we are really looking at now is what is called Liouville's theorem I will tell you at the 

end what the theorem is, VI double L Liouvilles theorem. So, I hope the question is clear and let 

me just create some notation. So, I want to define this entire set of coordinates q1, q2 so and so 

forth qn and then you have p1, p2 as pn so you have all the 2n coordinates here, let me call these 

collectively as x and I put a vector as x just to mean all these that it is a multi-component thing.  

And then also I have my Hamilton's equations which let me write down qk dot is delta H over 

delta pk and you have pk dot as delta H over delta qk and if I am differentiating H with q I 

remember that there is a minus sign here. So, I define a vector f to be the following, so delta H 

over delta p1, delta H over delta p2 so and so forth, delta H over delta pn, then you have delta H 

over delta q1 with the minus sign, so I am what I am doing is I am just listing these right hand 

side parts here and here along this.  

And you go further and delta H over delta qn again there is a minus sign I put here, this entire set 

of quantities I denote by vector f. So, this equations of motion Hamilton's equations of motion 

here using the notation which we have written down just now can be written as x dot is equal to 

delta f over sorry is equal to f. So, if I look at for example what is x1 dot it will be f1 which is 

delta H over delta p1.  

And what is x1? It is q1, so q1 dot, q1 dot should be delta H over delta p1 which is correct, 

which is what you have it here and let is look at this one this is let us say x of n plus 1, x of n 

plus 1 would be p1 and p1 dot should be f of n plus 1 which is minus delta H over delta q1 which 

is correct. So, all I have done is written down Hamilton's equation in this form beyond that I 

have not done, there is no content in here it is just notation.  



So, these are our 2n first order differential equations in time and then I can write x at any time I 

mean at time t naught plus dt, so I am starting with time t naught and I look at what happens at 

after small interval of time dt and you can write down this as x of t naught plus f of x at t naught 

times that small time interval dt and then you will have all the higher order corrections, this is 

just this equation written or solved near t naught, that is fine that is good.  

So, what is contained in here is the information about how the points are going to move in time, 

that is what is contained in here which is same as this equation. Now, let us first before we are 

able to ask how things how the volume is going to change with time I should first write down the 

expression of the volume and write down how volume changes.   

So, the volume is the following so let me here it write down here itself, so volume at, volume at t 

naught is what is d2nx at t naught, which is nothing but dx1, I am dropping the t naught now 

dx2, so and so forth, dx2n, which is just dq1 dq2 up to dqn and then dp1 dp2 up to dpn, that is 

what the volume is at time t0, you can put t0 here as the arguments.  

And then at time t naught plus dt you will have d2xn of t naught plus dt which is again the same 

thing, similar thing dx2n t naught plus dt. So, that is fine, that is that was easy. Now, how are the 

two volumes related this one and this one? You know how they are related and the relation is this 

you take you go let me just show here, you see the x is going to change like this, so you have a 

transformation of your x from this to this one which is given by this relation. So, all you have to 

do is find the Jacobian of transformation.  
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So, all you have to do is find the Jacobian and let us denote Jacobian by J, then you know that 

the two volumes are related by the following dx2n at t naught plus dt is equal to dx2n at t naught 

and the change is this, it is you have a factor of the Jacobian which comes in here and if you 

recall where the Jacobian is just the determinant of this matrix dxk t naught plus dt over dxn, let 

me put m here, so you have to just take these you have to construct the matrix which contains all 

these partial derivatives.  

So and k runs from 1 to 2n and also runs to from 1 to 2n, so this is 2n cross 2n-dimensional 

matrix and you have to find the determinant of this and then multiply it here which gives you the 



new volume. So, now the task is to evaluate the Jacobian, the moment I know the Jacobian I 

know the answer and I will have to just integrate over that entire region to generate the volume, 

right now these are differential elements of the volume, so let me do that, let me try to evaluate 

the Jacobian and of course to do that you have to use this piece of information that which knows 

how things are changing with time.  

So, let me write this equation here this vector equation x as xt naught plus f times dt in the 

component form. So, in component form you have x of k t naught plus dt is equal to x of k at t 

naught plus f of k x at t naught dt and you have higher order terms also which anyway we are 

going to drop because we are looking at infernal decimal dti I can drop it here itself it is 

unnecessary to carry this. 

So, let us calculate this derivative delta xk delta xm, del xk over del xm at t naught, clearly this 

will give you delta km unless k is equal to n this guy is 0 only when knm are equal this is going 

to give you 1 plus the derivative of f with respect to xm, so delta fk over delta xm, I will drop 

this x of t naught for ease of writing and clarity but it is there that argument is there and you have 

a dt here, let me keep writing this.  

Now, what you have if I want to write the same thing using matrix notation then the right hand 

side this side you can write as identity matrix plus let me think I want to put dt here I am that is 

correct, let me denote this matrix by matrix A, so the matrix A has as its components delta fk 

over delta xm times dt you have and you have other order dt square terms.  

So, what we want to do is look at the determinant of this, so we are interested in finding out the 

determinant of 1 plus A dt and we are we want the result only up to dt, we are not interested in 

higher-order contributions. Now, that is easy, actually that is not very difficult, all you need to do 

is there are many ways in which you can do this, but you can use the following formula which 

you should be familiar with.  
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Let us say you have a as A matrix, then the determinant of that matrix can be written as epsilon 

i1 where epsilon is Levi-Civita tensor let me be little bit more clear epsilon i1 i2 in times ai11 ai1 

i22 ain n. So, that is the result and you know the Levi-Civita tensor is or this and total in the 

symmetric matrix is 1 if you have i this is so epsilon 1 2 3 so and so forth n is defined to be plus 

1 and whenever you interchange any two indices you pick up a minus sign that is how this option 

is defined and ai11 these are the matrix elements of the matrix A.  

So, that is what I am going to use here. So, let us see what my jacobian is now, my J is epsilon i1 

i2 and it will go up to 2n because you have two n-dimensional 2n cross 2n dimension matrix and 

then here you have your 1 plus Adt, so in component form this becomes a1 the first sorry 

corresponding to this you have to write delta i11 plus capital Ai11 dt that is what you will have 

here and then you have all those factors and for this last one you will have delta i2n2n plus 

Ai2n2n dt  

Now, let us collect terms of order I mean the terms which are not proportional to dt and then the 

terms which are proportional to dt and then we will drop the terms which are higher powers in dt 

that is what I am going to do. So, the terms which do not involve any dt are going to come from 

multiplying this epsilon with the deltas without involving any of the As.  

So, if you have this epsilon multiplying all the deltas these deltas will force the i but this delta 

will force the i1 to be 1 in here, so it will become epsilon 1, then i2 will be forced to 2, so it will 



become epsilon 1 2 and similarly this thing will be force i2 into be 2n, so one term you are going 

to get is epsilon 1 to n so forth up to 2n, so that is the term without any dt plus now you are going 

to generate the terms proportional to dt in many ways.  

So, if you pick up this factor from this term and all the others are deltas then you are going to 

have a term proportional to dt. Similarly, if you pick from this one a delta and you pick a21 a2 

ai22 and all others to be delta then you get another term which is proportional to dt, so let me 

write that down, so you are going to generate terms like this, let us reduce some labour in 

writing, so you are going to get Ai1t sorry Ai11 dt and all the others will be just delta.   

So, you will have delta I am just writing delta i11 also, but it is not there I will just strike it off, 

i22 and similarly you proceed and go up to i2n2n and this factor is missing in this one. And these 

kind of terms let me if I was a bit more careful I could have, so I will just pull out this term 

because you see now you understand you are going to the next term which I am going to write 

will again have an epsilon it will have a corresponding A times dt and the same piece with this 

being removed and you will keep this maybe let me I should let me write down.  

Plus epsilon i1 i2n and then you will have Ai2n2n dt and all these deltas, i subscript 2n2n, so this 

time, and the last term this will be gone and the all the other terms that you are going to generate 

will involve multiplication of at least two pieces of As which will bring with them at least a 

second power of dt, so we are going to drop all those, so this is not there, so all those other terms 

will be higher orders in the change in time.  

And now that is easy your first term is just one which you also expect because to the lowest 

order there is no change right because the time you are looking at the volume change after and 

infinite decimal time, so you expect that Jacobian would be to the lowest order 1, so that is 

correct, that is good, you have got of the 1 here plus we expect something proportional to dt and 

let us look at here, these all these deltas will force all the except for i1 all the other indices to be 

equal to what you have here.  

So, you will have epsilon i1 2 3 4 up to 2n and then you have ai11 dt, so you will get let me write 

down epsilon i11 2, sorry not 2, 2 3 so forth to 2n with Ai11 dt and all such terms are here let me 

I down anyway, epsilon this will be 1 2 so forth up to 2n minus 1 and then you will have i 

subscript 2naAnd you will have Ai2n2n dt, plus higher order terms.  



Now, you see if this will be non-zero only if i1 is 1, if i1 is 2 or 3 or something it is going to be 0 

and you have a summation over i1 because it is summation convention is still here, so the only 

possibility for this is to be 1 and that will give you a positive sign because this will be fine 

epsilon 123 and that will force this one to be A11.  

So, it is 1 plus this will be A11 dt, next one will be A22 dt and similarly A2n2n dt. So, you have 

trace of A times dt, the sum of all the diagonal entries is the trace of this matrix. A. That is good, 

now this is just 1 plus let me write down now you remember your capital A was the matrix this 

one this matrix, now we are looking at the trace of this so you have delta fk over delta xk and 

you have a summation over k which is just gradient of sorry divergence of f.  

So, I can write as divergence of f, remember divergence is del f by del x1 plus del f by del x2 

which is just what is appearing as traces for you here. And dt is still there plus higher order.  
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So, we are almost there we have shown that if you look at the differential volume element in this 

2n dimensional space sorry t naught plus dt then it becomes 1 plus divergence of f dt, I am going 

to drop now all the higher-order pieces, that is how you transform. So, that is what your Jacobian 

is, this is your Jacobian. Now, let us look at the volume, so volume at t naught plus dt it is just 

obtained by integrating all the differential volume element and this as you have determined is 

just d2x and then d2nx at t naught and then you have your Jacobian which is 1 plus divergence of 

f times dt.  

So, let me split it into two integrals, so one will have this one multiplied in here and this will give 

you the volume at time t naught, let me take it to the left hand side, it will have a minus sign then 

and then the second term will be proportional to dt, so if I divide by the time dt I should have 

written delta Tt it would have made more sense, so anyhow, so you have let me call it to make it 

look more appropriate, so that is what I have.  

So, instead of dt let us put delta t and then put delta t to the left and take that limit. Then this will 

be only this piece remains here, so you have the integral over the volume element of divergence 

of f. So, dV over dt evaluated at time t equal to t naught is integral divergence of f times d2nx t0 

Now, if so happens that your f which you define here, where is it? Yes, these f, which are on the 

right hand side of the differential equation, then if it so happens that the f which you have here is 

divergence less, so let us say I assume that divergence of f is equal to 0.  



If that is true, then dV over dt at any time t naught will be 0, or at (())(48:33) all times t naught at 

all times will be 0, so the volume is not going to change with time if your f was divergence less. 

So, that is the generic conclusion for any system of ordinary differential equations but now let us 

look at what we have for our specific case of Hamilton's equations. So, let us see what we have 

for divergence of f.  
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So, divergence of f for Hamilton's equations, let us see, so your divergence of f is, let us recall, 

delta by delta q1 that is first coordinate and then recall what del f sorry f was, f was your, where 

is it? delta H over delta p1, let us write it here. Similarly, you keep on going up to qn and you 



have delta H over delta pn, then you have more terms delta over delta p1 and let us recall what is 

fn plus 1 was, fn plus 1 was minus delta H over delta q1.  

So, you have instead of a plus here a minus delta H over delta q1 and then you continue and del p 

and delta H over delta qn, that is all you have. So, this is H is being differentiated with respect to 

q1 and p1 and here also the same thing and the order does not matter and is the relative sign, so 

these two will give you 0, similarly all the other terms will also cancel pairwise and will leave 

you 0, so indeed for our Hamilton's equation we have divergence equal to 0 which means that 

whatever volume you take in the phase space it is going to evolve with time in such a manner 

that this time derivative is 0, meaning the volume is going to remain unchanged, remains 

unchanged with time.  

The shape of the volume may change, it will change in general, but the volume contained all the 

points which move the volume which they are going to span out it will still be the same as the 

original volume and this is what is Louisville is theorem, that is nice cheering which is very 

useful in statistical mechanics when you talk about different and symbols, but here we will not 

even worried about defining and symbol there is no need in here.  

But this is a very useful theorem which you will use for example in statistical mechanics, I think 

this is all that I wanted to say here I know that I can make a remark, I hope this is clear that this 

is the total time derivative of volume and you should contrast it with the partial time derivative. 

This statement where the partial time derivative is 0 is different from the total time derivative.  

So, when you are talking about a total time derivative in addition to time changing the 

coordinates are also changing, because d over dt is partial derivative with time plus derivatives 

with respect to all the other coordinates, so you are really moving together with all those points 

as they move and you are then asking about the volume whether it changes or not.  

But if you are just looking at this partial derivative, then you are staying put at one place and you 

are just looking at the time changing, as time passes and then of course the volume will be 

changing there it will be reducing for example. So, what happens there locally is different from 

what happens when you are flowing with the points. So, we are talking about this piece, we are 

not talking about just time passing at the same place. Anyhow, so this is the Louisville’s theorem 

which is quite useful and let us meet in the next video too carry this subject further. 


